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§0. I n t r o d u c t i o n  a n d  gene ra l  f r a m e w o r k  

Let (X, B) be a standard measurable space, and let T: X -+ X be an invertible 

measurable map. Let G be a locally compact, Abelian, Polish (LCAP) topological 

group and let ¢: X -4 G be measurable. 

The skew p r o d u c t  transformation 7¢: X × G -4 X × G is defined by 

7~(x, y) := (Tx, y + ¢(x)). 

A measure m: B ® B(G) --+ [0, oc] is called local ly  f ini te  if m(X x K) 
< oo V K C G compact. 

Our program is to identify all 7¢-invariant locally finite measures and study 

their asymptotic behaviour. 

It is known ([Fu], [Pa]) that if 7 is a uniquely ergodic homeomorphism of a 

compact metric space (with invariant probability p), G is compact (with Haar 

probability measure mG) and ¢: X --+ G is continuous, then ergodicity of 7¢ with 

respect to the product p ×mG is equivalent to the unique ergodicity of 7¢. 

For non-compact G, it is well known that if 7 is uniquely ergodic (with invariant 

probability p), and 7¢ is ergodic with respect to p × mG , then there is no T¢- 

invariant probability on X × G (see, e.g., [All chapter 8, or [Sc2]). 

It is natural to ask (as in [Ve]) for 7¢-invariant locally finite measures. There is 

a natural class of 7¢-invariant locally finite measures: the M a h a r a m  m e a s u r e s  

which we proceed to describe. 

Let (X, B) and 7 be as above and let h: X -+ R+ be measurable. We call a 

probability # E P(X, B) (h, 7 ) - confo rma l  if # o T ~ # and d# o T / d p  : h #-a.e. 

Now let ¢: X --+ G be measurable, and let a: G ~ ~ be a continuous 

homomorphism. Let tt = tt~ be a (e ~°¢, T)-conformal probability on (X, B). 

The associated M a h a r a m  m e a s u r e  is m~: B ® B(G) --+ [O, cc] defined by 

dm,~(x, y) := e-~(Y)d#(x)dy (where dy denotes Haar measure on G). The reason 

for this terminology is that Maharam measm'es were first considered for G = 

in [Mah]. 

A Maharam measure is easily seen to be r¢-invariant, the dilation from the 

first coordinate being canceled by the translation in the second. 

For the transformations 7¢ considered in this paper, we show the following 

properties: 

UNIQUE CONFORMAL PROBABILITIES: For each continuous homomorphism 

a : G -+ ]~, there is a unique (e ~°¢, 7)-conformal probability # = #~ on (X, B); 

MAHARAM MEASURES ARE ERGODIC: For each continuous homomorphism 

a: G -+ JR, the Maharam measure m~ is ergodic (for 7¢); 
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ERGODIC MEASURES ARE MAHARAM: The only ergodic T¢-invariant locally 

finite measures are those proportional to Maharam measures. 

Remarks: 
(1) For G compact, the only continuous homomorphism c~: G --+ N is a - 0, 

the only Maharam measures are of form m × mG, and the above properties for 

% are equivalent to its unique ergodicity. 

(2) As shown in [Sc2], there are abundances of (e ~°¢, 7-)-conformal infinite 

measures, and of non-locally finite, vo-invariant, a-finite measures. 

We at tempt our program in two cases. In §1, we treat the so-called c y l i n d e r  

flow R~,x: T x R ~ T x R defined by R,~,x(x, y) := (x + a, y + X(x)) where 

c~ E T "- Q and where 

)/(x) = (~ + 1). 1[0,_~+~) - ~ (some ¢~ > 0), 

the rest of the paper being devoted to certain group extensions of adie transfor- 

mations by symmetric eocycles (see below). 

Let S be a finite, ordered set, let A: S x S --+ {0, 1} be an irreducible, aperiodic 

matrix and let E = EA C S N be the corresponding (topologically mixing) subshift 

of finite type (SFT). 

Let V be the adding machine on S N. The adic  t r a n s f o r m a t i o n  on E is the 

induced transformation of V on E defined (in §2) for all except countably many 
points x E E by T(X) = V min(n>-l: V~(x)eE}(x). 

For f :  E -+ 13, we consider the s y m m e t r i c  cocyc le  ¢1: E -+ 13 defined 

by ¢ / (x)  := ~ o ( f ( T i x )  - f(Ti(Tx))) where T: E ~ E is the shift, the sum 

terminating as T i(x) = T i(Tx) V large i _> 1. 

In §2 we show that the class of 7-¢finvariant, locally finite measures for f ape- 

riodic having finite memory is the collection of measures which are proportional 

to mixtures of the canonical MaharaIn measures (Theorems 2.1 and 2.2). 

In §3 and §4, we consider the asymptotic properties of v4s with respect to 

Maharam measures, where f :  E -+ R d is an aperiodic Hhlder continuous function. 

For ~ C ]~d, consider the Maharam measure ms: B(E x ]~d) __~ [0, (X)] defined 

by dm~(x, y) = e-~'Ydp(x)dy where # = #~ is the (e ~'I, T)-conformal measure. 

In §4, we show that 7¢f is boundedly rationally ergodic with return sequence 

a(n) x n/ ( logn)  d/2 (see [A2], and/or  §4) with respect to m0. Bounded rational 

ergodicity is a strong form of rational ergodicity, and so this entails a kind of 

absolutely normalized ergodic theorem: 

Sn(f) 
~'~ [ f dmo V f • Ll(m0) 

J x  
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where fn ~'* f if V me ~ oc 3 nk = mi  k $ oc such that V pj = nkj i" co, we have 
N 

&N ~-:~j=l fP~ --+ f a.e. as N -+ cc (see [A1]). 

For a # 0, 7¢s is squashable with respect to me (see [A1]) and there is no 

such kind of ergodic theorem. Nevertheless, we show in §3 that the logarithmic 

ergodic theorem holds: 

n--1 
log )-~k=0 F o v~, s 

log n 

hp. (T) 

htop(T) 
m~-a.e, as n --+ cc VF E Ll(m~)+ 

where p~ is the equilibrium measure of a -  f (see [Bo]). 

There is some relation between the results of §2 and results in [P-S] remarked 

at the end of §2. The program in §3 and §4 has been previously carried out in 

full in [A-W] for E = {0, 1} N, f ( x )  = xl.  Bounded rational ergodicity of certain 

of the cylinder flows was established in [A-K]. 

Horocycle flows on Abelian covers of compact, hyperbolic surfaces can be con- 

sidered as "smooth analogues" of the skew products considered here. Ergodic, 

Maharam measures for these horocycle flows were introduced, and their asymp- 

totics considered in [B-L]. 

We conclude this introduction with a Basic Lemma, to be used in §1 and §2. 

For a E G, define Qa: X x G -+ X x G by Qa(x,y)  := (x,y + a), then 

T¢ o Q~ = Qa o T¢. If m is an ergodic T¢-invariant locally finite measure, then so 

is m o Q~ (a e G) whence, as is well known, either m o Q~ 2 m or m o Qa = cm 

for some c E R+. 

For m an ergodic T¢-invariant locally finite measure, set 

H = Hm := {a E G: m o Qa "~ m}. 

0 . 1  B A S I C  L E M M A :  

(i) H is closed; 

(ii) If  H = G, then m is proportional to a Maharam measure. 

Proof: (i) By unicity of absolutely continuous invariant measures, 3 a multi- 

plicative homomorphism A : H -+ R+ such that  

f f o Qadm = A ( a ) f  f d m  ~/a E " ,  f C Li(m). 
J x  xG J X  xG 

For f :  X x G -+ N continuous with compact support, we have that f o Qa~ -+ 

f o Q a  uniformly as an -+ a in G. Suppose that an E H, an -+ a ~ H. This forces 
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A(an) --+ O, since by the local finiteness assumption, V e > 03 f :  X × {3 --+ N+ 

continuous with compact support such that 

/xxc,  f d m :  l' / x x ~ f  °Qadm < e 

whence 

e > / x  f °Qadm +-- / x  f oQandm= A(a~). 
xG xG 

On the other hand 3 f :  X x G --~ R continuous, everywhere positive, and ab- 

solutely integrable. Clearly f o Qa > 0 and fxxG f o Qadm > 0, contradicting 

A(a,~) ~ 0 and showing that a C H. 

(ii) There is a measurable (hence continuous) homomorphism a: G -+ R such 

that moQ~ = e-'~(~)m. Define the measure ~ :  B(X x g )  --+ [0, co] by d-~(x, y) := 

e~(Y)dm(x,y). It follows that ~ o Q ~  = ~ .  For A E B(X), B E B(G) and a E G, 

we have 

m(A × (B + a)) = moQ~(A  × B) = m(A × B). 

Since the Haar measure on G is unique up to a constant, V A C B(X), 3 #(A) 

E R+ such that 

~ ( A  x B) = #(A)m•(B) (B • B(G)). 

It follows that # is a finite measure on X, and that 

din(x, y) = e-C~(Y)d#(x)dy. 

The v¢-invariance of m now implies that # o 7 ~ # with d# o T/d~ : e ~°¢  (it 

being necessary to cancel the dilation due to translation of the second coordinate 

by dilation of the first). 1 

§1. C y l i n d e r  f lows  

Let T :-- ]R/Z ~ [0, 1) denote the additive circle (the multiplicative circle being 

S 1 := e 2~iv c C) and let R,~(x) := x + o~ modl .  The natural distance function 

on ~i" is given by the norm IJxll :-- minnc~ Ix + n I. 

For/3 > 0, let G~ C R be the closed subgroup generated by 1 and ,8. Note 

that G~ = ,8Z if/3 E Q and G~ = ]~ if/3 ~ Q. Consider, for ,8 > 0, the function 

X : T -+ GZ defined by 

X = X ('~) :--  1[o,:~)4 - ,81[;~.+~,1 ) = (,8 + 1)1[o,;r~.+~) - ,8 
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and the skew products (or cylinder flows) R~,x(~) : T x G~ --+ T x G~ defined by 

R~,x(~)(x ,y  ) = ( x + a , y + x ( ~ ) ( x ) )  for a ~ Q,/3 > 0. 

The goal here is to identify all the locally finite, a-finite, R~,x(~)-invariant 

measures. Write X (z) := Ek-O 1 X (~) o n k. 

We recall some information about the continued fraction expansion 

1 

al + 1 1 
a2d a3¥... 

of a e [0, 1) \ Q. This can be found in [Kh]. 

The positive integers an are called the p a r t i a l  q u o t i e n t s  of a. 

Define p,,, q,~ • Z+, gcd(p~, q,,) = 1 by 

P__~n := 1 
1 

qn al + a24 1 
...+~la,~ 

then 

q0 = 1, ql -- hi, qn+l ~ an+lqn + qn--l; 

PO = O, Pl ~- 1, Pn+l = an+lPn + Pn--1; 

P2_...~n < OZ < P2n+.____~l and P'~ Pn+l _ ( - 1 ) n +  1 
q2n q2n+l qn qn+l qnqn+l 

The rationals Pn/q,~ are called the c o n v e r g e n t s  of a, and the numbers q, are 

called (principal) d e n o m i n a t o r s  of a. 

Recall the Denjoy-Koksma inequality, that IIFq. I[oo < Vv F for any function 

F: T -+ ]i of bounded variation ( V v F  < oc) such that f v F ( t ) d t  = 0. In 

particular, IX(~) I _< 2(/3 + 1). 

1.1 PROPOSITION: ~/ ol ¢ Q , / 3  > 0 a n d  ~ > O, 3 a unique (~lx(~l,R~)-conformal 

probabili ty measure # -- #~,~,n E P(T).  

Proposition 1.1 follows from a more general "folklore theorem" (pointed out 

to the authors by J-P. Conze and K. Schmidt): 

THEOREM: Let  a ~ Q and suppose that h: T -+ • has bounded variation and 

f v  h ( x )dx  -- 0. There exists a unique (e h, Ra)-conformal It E P(T).  Moreover, It 

is non-atomic. 

Proof: We first prove existence. 

Let F be the (countable) set of discontinuities of h and let F ~  := [-J~ez R~F. 

As shown in [Ke]: 
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3 X a compact  metric space, T: X --+ X a homeomorphism,  7r: X --* [0, 1) 

continuous and finite to one, H:  X ~ R continuous such tha t  

(i) 7 r o T = R a o T r ,  (ii) V x ~ F c c ,  l~ r - l{x} l=  1 and, H(Tr- lx)  = h ( x ) .  

It  follows from the Denjoy Koksma inequality tha t  

(iii) IHqn(X)l < V v h  V x E X \ 7 r - l F ~  and hence (by continuity) Y x E X.  

By theorem 4.1 in [Sc2], 3 p E P ( X )  and e E 11~ such tha t  # o T ~ # and 

dp o T / d #  = e H+c. Since 

1 = # ( T q n X )  = f ¥  eHq'~+cq'~d# ~ e cqn 

as n ~ ec, we must  have c = 0. 

We claim that  # is nonatomic.  Otherwise 3 x E X with #({x}) > 0 whence 

3 u E P ( X ) ,  u << # w i t h  u = ~ , ~ e z a ~ S T ~  where an > 0. By d # o T / d p  = 

e H, an = ee H~(~) for some c > 0 entailing u ( X )  >_ c ~ , ~ e  zeH~,~(~) = ec and 

contradict ing u E P ( X ) .  

Now define u E P(T)  by u = # o lr -1. It  follows that  u is nonatomic,  whence 

u ( F ~ )  = 0 and u o R~ ~ u and d u o  R ~ / d u  = e h u-a.e.. 

Existence and nonatomici ty  are now established and we turn  to the proof  of 

unicity. 

We prove tha t  if u o R~ ~ u and d u o  R,~/du = e h u-a.e., then Ra is p- 

ergodic. This suffices since normnicity implies existence of p with p o R~ ~ p and 

d p o R ~ / d p  = e h p-a.e., and R~ not p-ergodic. 

As above, u is non-atomic,  and by minimali ty of R,~, u (J )  > 0 V intervals J .  

Thus if 7r: [0, 1) ~ [0, 1) is defined by 7r(x) :=  u((0, x)) then ~r is an orientation 

preserving homeomorphism of T, and u o Ir-1 = Lebesgue measure. It  follows 

tha t  S = rro Ra o 7r -1 is absolutely continuous with S ~ = e h°~r and by theorem 

2b in [dM-vS] S is ergodic with respect to the Lebesgue measure. It follows tha t  

R~ is ergodic (u). I 

Remark:  The (~j x(z) ,R~)-conformal # = #~,~,~ E P(T)  can also be obtained 

using the methods  of [Her] (as in [N1] and [N2]): 

Define the continuous f = f~,Z: R ~ R by 

= S ~ . x  x E [ 0 , a 0 ? , / ~ ) )  
f , , ~ ( x )  [ ,j-[3(x - a(~ ,~) )  + a( ,hf i)  x E [a(~,/~), 1) 

where a(~,/~) :=  ( ~  - 1)/(~/~+1 - 1) (this value of a is forced by the slopes, and 

continuity of f~,~). 
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By the theory  of ro ta t ion  numbers ,  3 0 < b < l ,  and an orientat ion preserving 

homeomorph i sm ~: T --+ ~? with ~(0) = 0, ~(1) = 1 such tha t  ~-1 o f~ o ~ = R~ 

where f~ := fn,~ + b. 

I t  can be shown tha t  if # := m o ~, then d# o R ~ / d #  = ~ .  

INVARIANT MEASURES FOR THE CYLINDER FLOW R a , x ( ~  ). Recall t ha t  q E N is 

called a L e g e n d r e  denomina tor  for c~ if 3 p E N such tha t  Is - P/ql < 1/2q 2" 

This  is because of Legendre 's  theorem tha t  a Legendre denomina tor  for a is a 

principal  denomina tor  for a .  

1.2 SUBLEMMA: Suppose tha t  q is an odd Legendre denominator for a, then 

1. 

Proof'. in case I s -  p/q[ < 1/2q 2. 

Firs t ly  {kp /q  m o d l :  0 < k < q -  1} =:  (0 = a i  < a2 < " "  < aq < 1} with  

ai := kip~q; and 

{ k p / q + l / 2  m o d l : 0 < k < q - 1 } = : { 0 = b l  < b 2 < ' " < b q < l }  

satisfy a l  < bl < a2 < b2 < " -  < aq  < bq < 1 w i t h  bi  - ai = a i + l  - bi = 1/2q. 

Now let k i , l i  (0 < i < q -  1) be such tha t  ai = kip/q m o d l  and bi = 

t ip /q  rood 1. Set ai  :=  kia  rood 1 and bi = ~ia rood 1. 

We claim tha t  ~1 < bl < ~2 < b2 < " '"  < aq < bq < l. The  reason for this is 

t ha t  tka - kp/ql  < t / 2q  (0 < k < q - 1) whence in case o~ > p/q,  

and in case c~ < p/q,  

a i + l  ~ a i + l  ~ a i + l  --  - -  

1 1 
+ ~- = bi < bi < bi + ~-  -- ai+l < ' " ,  

zq zq 

1 1 
~q = bi > bi > bi ~-q = ai > . . - .  

Now X~ 1) is a step function with points of discontinuity 1 - ~1 > 1 - bl > 

1 - ~ 2  > l - b 2  > . . .  > 1 - ~ q  > 1 - b q  _> 0, and jumps  o f + 2  at  1 - a i  (1 _< i < q) 

and - 2  at  1 - ~ i  (1 < i < q). The  values of X(q 1) are of the form { v , v + 2 }  

for some v E Z. The  only v C Z pe rmi t t ed  by the condition fvx(ql)(t)dt = 0 is 

v = - 1 .  Thus  IX(q1)[ = 1. | 

This  subsection is based on the following lemma,  which is obta ined  from sub- 

l e m m a  1.2 and the well known fact t ha t  there are infinitely m a n y  odd Legendre 

denominators  for any a ~ Q: 
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1.3 LEMMA: ~ nk ---~ co such that ]X(1,)kl ---- 1 V k > 1. 

Remark: Sub lemma  1.2 can be s trengthened:  IX(ql)l = 1 whenever q is an odd 

principal  denomina tor  for a .  This is shown in [N1]. 

For r / >  0, a E T \ Q define the R~,x(1)-invariant, M a h a r a m  measure  rn~,n on 

/3(T x Z) by 

m ~ : ( A  x {n}) := ,]-ntta,l,n(A ). 

1.4 THEOREM: (1) V a ¢ Q and 7/ > 0, (T × Z,B(~r × Z),ma,n,R~,x(,)) is a 

conservative, ergodic measure  preserving transformation. 

(2) If  m is a locally finite measure on ~2 x Z such that ( ~ x  Z, B ( ~ x  Z), m, R~,x(,) ) 

is ergodic and measure preserving, then ~ ~1, e > 0 such that m = cma,n. 

Proof'. The ergodicity of (~i' x Z, B(V x Z),  rn~,n, R~,x(,) ) was established in [N1] 

(see [C-K] and also [A-K] for the Lebesgue case r/ = 1) and is s t andard  using 

[Scl] and L e m m a  1.3: 

3 nk -4 co (odd Legendre denominators)  such tha t  I)~(nl)l - 1 and 

#~,I,v(R~kAAA) -+ 0 V A • 13(T). 

We prove (2). Let  ra be an Ra,x(1)-ergodic locally finite measure  on T × Z. We 

claim tha t  ra = cm~, n for some c, ~ > 0. By the Basic L e m m a  and Propos i t ion  

1.1, it suffices to prove t ha t  H := {n • Z: m o Qn N m} = Z. 

Suppose tha t  H ¢ Z, and write ink(A) :=  m ( A x  {k}). Then  ~ := m - l + m t  ± 

too. 3 U C T open, such tha t  rno(U) = 1 and N ( U )  < 1/5, whence ~ I C T, an 

open interval such tha t  ~ ( 1 )  < too(I)~5. 

Given 0 < p < 1 and an open interval L = (a - r , a  + r) ,  denote by Lp the 

subinterval  ( a -  pr, a +pr) .  Note tha t  if x • Lp and [y[ < ( 1 - p ) [ L I / 2  then  

x + y E L .  

3 0 < p < 1 such tha t  mo(Ip) > rno(I)/2. By L e m m a  1.3, 3 k > 1 such tha t  

]lq, kall < (1 - p ) l I I / 2  and IX(t,,)k [ =- 1. 

I t  follows tha t  

R2;(, (Ip × {0}) C I x {-1, 1} 

whence 
, o(5/2 < mo(I ) = m(I  × {0}) 

qok -- m(R × {0})) < × {-1,1}) 

: ~ ( I )  < rao(I)/5. 

The  contradict ion shows the impossibil i ty of H ¢ N, and thus proves (2). 
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INVARIANT MEASURES FOR THE CYLINDER FLOW R a x 3). For 7,/~ > 0, a E 

2" \ Q define the locally finite measure  ma,3,  ~ on B(~  × R) by 

dma,3,~(x, Y) := ~l-Yd#~,3,~(x)dy. 

Evident ly  m~,~,v o R~,x(~ ) = m~,~, w 

Fix a E "1[' \ Q. For t E R, consider the  set 

L(t) = na(t)  := {a • [0, 1): ~ nk -+ cx~, qnkt m o d l  --+ a} 

(where {q~: n > 1} are the denominators  of a) .  

Theo rem 4.1 in [Ku-Ni] implies tha t  L(t) = [0, 1) for Lebesgue-a.e.  t • R. 

Moreover,  it is shown in [Kr-Li] tha t  for a ¢ Q with  bounded  par t ia l  quot ients  

and t • R, L(t)  is finite iff t • Q + (~Q. 

1.5 LEMMA: I ra  • L(/3/fl + 1) is positive and qn~/3/(/3 + 1) m o d l  -+ a, then 

of" (3) V x • T, all limit points ~[Xq,,k (x)}k>l are contained in 

{ ( / 3 + l ) ( N - a ) :  g = - l ,  0,1,  2}. 

Prod: Let e > 0, N E Z and suppose t ha t  Iqn3- ~ - N - a  I < e; t h e n % 3 =  

(/3 + 1 ) (Y + a ~ e), whence 

X(3) = (3 + 1)(l[o,~+~))qn - q~/9 = (/9 + 1)(L - a ± e) q~ 

where L := ( l [o ,_~))q ~ - N • Z. 

Recalling t ha t  tX~#~){ _< 2(/3 + 1) we see tha t  - 2  + a -  e _< L <_ 2 + a + e. I t  

follows tha t  for a • (0, 1) and sufficiently small  e > 0: L = - 1 ,  0, 1, 2. I 

1.6 THEOREM: Suppose that a ¢ Q, fl > 0 are such that L(~-~)  is infinite; 

then: 

(1) For each ~ > 0, (~  × R, B(~  x R), m~,~,n, R~,x(~) ) is a conservative, ergodic 

measure preserving transformation. 

(2) I f  m is a locally finite measure on ~ × R such that 

(T x R, B(T x ~), m, Ra,x(#) ) 

is ergodie and measure  preserving, then ~ 7, c > 0 such that m = cm~,3,v. 

Proo£" The  ergodicity of (T x R, B(~? x ~) ,  m~,#,v , R~,x(z)) was established in 

IN2] and in [St] for ~ = 1 (Lebesgue measure) .  
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We prove (2). Let m be an Ra,x(m-ergodic locally finite measure on T x JR. We 

claim tha t  m = cm~,#,~ for some c, 77 > 0. By the Basic Lemma and Proposi t ion 

1.1, it suffices to prove tha t  H :=  {a • 1~: m o Q~ ~ m} = N. 

Suppose otherwise; then H ~ R and 3 q > 0 such tha t  H = qZ. It  follows tha t  

a • L (~ -~ )  with (fl + 1 ) ( N -  a) ¢ H V N = - 1 , 0 , 1 , 2 .  
1 (Else L(Z-~)  C [0, 1]nUN=_l,O,l,2(N+ ~-~H), whence since H = qZ, L(~-~+I) 

is finite in contradict ion to our assumptions).  

Fix such an a and set E :=  { ( # + 1 ) ( N - a ) :  g = - 1 , 0 , 1 , 2 } ;  then E C R \  g .  

Set ~ : =  ~-]~jCEm o Q j ;  then ~ Z m and ~ K C T x ~ compact  such tha t  

re (K)  > 0, ~(K) = 0. 3 U C ~ x R open and precompact ,  such tha t  K C U and 

~ ( U )  < m ( K ) / h n  where n is the Besicovitch covering constant  for R 2 (n < 16, 

see [W-Z]). 

For each z = (x, y) • K 3 an open rectangle R(z) with diameter  less than 

i m i n { I j _ j ' l :  j , j ' •  E, j ¢ j'} such tha t  z • R(z) C U. 3 a finite set F C g such 2 
tha t  K C V := U~er  R(z) and ~ z e r  1R(~) _< n. Evidently ~ ( V )  < m(K)/hn. 

We claim that  (at least) one of the rectangles R = R(z) (z E F) has the 

proper ty  tha t  ~ ( R )  < m(R)/5, else 

m(v) > 1 Z m ( R ( z ) )  > 1 1 

z E P  zCF 

It  follows from the restriction on the diameter  of R tha t  {Q#R: j E E} is a 

disjoint collection, whence, if S :=  UjeE QjR, then 

= re(R) < 

Write R = I x J where I c (0,1) and J C R are open intervals. Given 

0 < p < 1 and an open interval L = (a - r, a + r), denote by Lp the subinterval 

(a-pr,  a+pr). Note tha t  i f x  • Lp and lYl < (1 -p)lLI/2 then x + y  • L. 
3 0 < p  < 1 s u c h  tha t  m(Ip x Jp) > m(R)/2. B y L e m m a  1.5, 3 k > 1 and 

A C Ip such tha t  

Ilqn~att < (1 -p)lII/2, m(A x 7p) > m(R)/3 

and 

I t  follows tha t  

rain v (#) (x~ - Jl < (1 -p)IJl/2 
jEE ~q'~k \ ~ 

Rq k gp) c S o~ ,X(#  ) , ~  X 

V x E A .  



104 

whence 

J.  A A R O N S O N  E T  AL. 

The contradict ion shows the impossibil i ty of H ~ R. 

Isr.  J .  M a t h .  

m ( R ) / 3  < m(A × Jp) -- m(Rq:~(,)(A × Jp)) > re(S) < m(R)/5 .  

| 

§2. Locally finite invariant measures for tail relations of skew products 

Set S :-- { 0 , . . . ,  s - 1} where s _> 2, let A :-- (Aij)s×s be a ma t r ix  of zeroes and 

ones such t ha t  Vj2i s.t. Aij -- 1 and Vi3j s.t. Aij = 1. Set 

= ~A := {x  = (Xl, x 2 , . . . )  E s ~ : v i  A ~ x , + l  = 1}. 

We topologize E by considering the base of cylinder sets, sets of the form 

[ ~ 1 , . . . , ~ ]  = {x  E ~ :  x~ = ~k v I < k < n}  

where £1, • • • , •n E ~ .  

Let T: E -+ E be the left shift, T(Xl ,X2, . . . )  = (x2, x3 , . . . ) .  The  topological  

dynamica l  sys tem (E, T) is called a s u b s h i f t  o f  f i n i t e  t y p e .  Hencefor th  we 

assume tha t  it is topologically mixing. This  is equivalent to the existence of 

some M E N such tha t  all the entries of the ma t r ix  A M are positive (see, e.g., 

[~o]). 
An admissible word (of length n) is an element (~1,- . - ,  en) E S ~ (or word) 

satisfying A~j,~+ 1 = 1 Y 1 <_ j < n -  1. Note t ha t  a cylinder [el , . . . ,e ,~]  is 

nonempty  iff its corresponding word ( c l , . . . , ¢ ~ )  is admissible. We denote the 

collection of admissible words of length n, or p a t h s  of length n - 1 (the number  

of steps),  by W . ,  and set 14; :=  U~ W~. 

Consider T ' s  tail relation 

-- T(T)  :-- ((x ,y)  E ~ 2 : 3  n > O, T'% = T ' y } .  

Consider the reverse lexicographic order on ~(T)-equivalence  classes: 

x -< y iff 3n0 s.t. x~ o < Y,~o and xn -- Yn for any n > no. 

I t  is easy to see t ha t  for any fixed x -< y there are finitely m a n y  z such 

tha t  x -< z -~ y, so the type  of ordering in each equivalence class is ei ther Z, 

or Z +, or Z - .  Let ~ ,  Z _ ~  be the set of max imal  and min imal  elements of 

(~,-<),  respectively. To characterize these elements,  introduce functions Pmax, 

P m i n :  S --~ S 

Pma~(a) = m a x ( /  E S :  Ai,~ = 1) and Pmin(a) ~- m in ( i  :e  S :  Ai,~ = 1}. 
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Note that  

x E E ~  ~ xn-1 = Pm~x(Xn) for all n. 

I t  follows that  there are at most s maximal points (similarly, at most s minimal 

points) and all of them are periodic. 

The ad ic  t r a n s f o r m a t i o n  T: E \ E ~  -+ E \ E _ ~  assigns to each x the 

smallest y strictly greater than x. Specifically, given x C E \ E ~ ,  ~ ~ >__ 1 such 

that  

xj = Pmax(Xj+l) V 1 < j _< ~ - 1 and x~ < Pmax(X~+l), 

and we set T(X) := (Yl, Y2,. . .)  where the yk's are defined reverse-inductively: 

xk, k > [~ + l, 
Yk= m i n { i E S :  i > x ~ ,  Ai,x~+l = 1 } ,  k = l ,  

Pmin(Yk+l), 1 < k < l -  1. 

It  is convenient to restrict T to Eo := E \ Uj>_o ~-JE_~ \ Uj<_o TJ~J'~cx)" 

Remarks: (1) It  is possible to visualize E as the space of infinite paths in the 

directed graph F with vertex set S x N and edges connecting (b, n) to (c, n + 1) 

iff Ab,c = 1. 
(2) If  ~ = S N is the full shift, and V is the adding machine, then ~- is the 

induced transformation Vz o in the sense that  r (x)  = v f ( x ) ( x )  (x C E0) where 

F(x)  := min{u >_ 1: Vn(x)  e E0}. 

(3) Adic transformations were introduced in [V1] (see also [V2] and [V3]) in 

the more general setting of non-stationary Markov chains. 

Let G be a locally compact,  Abelian, Polish topological group. For f :  E --+ 

G, consider the skew product transformation Tf: E × G --+ E × G defined by 

Tf ( x , y )  :~- (Tx, y + f (x ) ) .  
Now Tf 's  tail relation is 

~(Tf )  := ( ( (x ,y ) ,  (x ' ,y ' ) )  6 (E x G)2:3  n > O, T'~(x,y) = T'~(x' ,y')} 

= {((~,y),  (x', y')) e (r~ × G)~: (x, ~') e ~(T),  y ' -  y = ¢~(x,~')} 

where the s y m m e t r i c  (or  ta i l )  cocyc le  e l :  ~ -+ G is defined by 

CX) 

Cs(x, ~') := ~(f(T~) - f(T~x')). 
k=0 

Consider TCS: E0 x G --+ E0 x G defined by 

% ( x , y )  := (~x,y + ¢s(x)),  
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where e l ( x )  = e l (X ,  Tx). It  is easy to see that  the orbits of Tel are exactly the 

equivalence classes of ~(Tf)  A (E0 × G) 2. 

In this section we identify the Tcfinvariant  locally finite measures for certain 

f :  E --+ G which we now proceed to describe. For f :  E --+ S 1 and k _> 1, let 

vk( f )  := sup{I f (x )  - f(Y)l : x , y  E E, xj = Yi V 1 _< j < k}. 

The collection of Sl-valued H h l d e r  c o n t i n u o u s  functions on E is 

7{sl :-- {f: F~ -4 SI: 3 0 < 0 < 1, vn( f )  = O(O n) as n --+ cx~} 

and the collection of Sl-valued functions on E w i t h  s u m m a b l e  v a r i a t i o n s  is 

"~'$1 := {f: ~ --+ sl: E Vk(f) < (:X)}. 
k=l 

The collection of G-valued H h l d e r  c o n t i n u o u s  functions on E is 

nG := {f: ~ ~ G: v3" ~ 8 ,3 ' °  f ~ ~tsl}, 

and the collection of G-valued function on E with s u m m a b l e  v a r i a t i o n s  is 

~-G := {f: E --+ G: V3' c G,3 'o  f C -~$1}. 

Finally, a function f :  E --~ G is said to h a v e  f in i te  m e m o r y  if 3 N > 1 such 

that  f ( x )  = f ( x l , . . . ,  xjv). 
These notions coincide with the usual notions of Hhlder continuity, summable 

variations, and finite memory of R-valued functions in the case G = R. Clearly, 

every f :  E --+ • which is Hhlder (respectively with summable variations, finite 

memory) in the usual sense is also Hhlder (respectively with summable variations, 

finite memory) according to the definition above. To see the other direction, note 

that  if f C YR then f is continuous, because 3' o f is continuous for every 3' E ~,. 

Therefore [If[l~ < c~. Now consider the character 3"(x) = e 2~rix/l°llfll°° to see 

that  vn( f )  × v,~(3' o f ) .  It  follows that  if f is Hhlder continuous (respectively 

with summable variations, finite memory) in the above sense, then it is Hhlder 

(respectively with summable variations, finite memory) in the ordinary sense. 

Clearly, if c~: G -+ R is a continuous homomorphism, then a o ~/G C 7-/n~ and 

~oTG c ~R. 

A measurable function f :  E -+ G is called p e r i o d i c  if 3 7 E G, z E S 1 and 

g: E ~ S 1 measurable, not constant, such that  7 o f = z-gg o T. I t  is known that  

in the case f E ~G, g is necessarily in 7/s~. The function f is called a p e r i o d i c  

if it is not periodic. 
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2.1 THEOREM: Suppose that P'A is topologically mixing, and that f • 7-IG is 

aperiodic. For every continuous homomorphism a: G --+ R: 

(1) there is a unique (e-~(¢D, r)-conformal probability #~ • (P(Eo); 

(2) #~ is non-atomic; 

(3) %s is ergodic with respect to the Maharam measure on Eo x G defined by 

dm~(x,  y) = e-~(Y)d#~(x)dy. 

Theorem 2.1 is essentially known (although we indicate the proof). Our main 

result in this section is 

2.2 THEOREM: Suppose that f:  ~. -+ G is aperiodic and has finite memory. 

I f  m is an ergodic, T¢s-invariant locally finite measure on ~o × G, then m -- cm~ 

for some c > 0 and some continuous homomorphism a: G --~ JR. 

The collection of all locally finite, T¢-invariant measures on E0 × G is identified 

by Theorems 2.1 and 2.2 as the collection of mixtures of Maharam measures. 

This is because by the ergodic decomposition (see, e.g., [All), any locally finite, 

%-invariant measure is a mixture of ergodic ones. 

Conditions for aperiodicity based on [Kow] were given in §3 of [A-D1]. We'll 

say that  a topologically mixing subshift of finite type (E, T) is a l m o s t  o n t o  if 

V a,b • S, 3 n _ 1, a = s0, al . . . .  , sn = b • S such that  T[sk] M T[sk+l] 

O ( 0 < k < n - 1 ) .  

2.3 PROPOSITION: Suppose that E is mixing and Mmost onto, and that ¢: E --+ G 

satisfies ¢(x) = ¢(x0); then either ¢ is aperiodic, or 3 "y • G, A • S 1 SUCh that 

V o ¢ ~ A. In particular, i fGroup(¢ (~ )  - ¢(~))  = G, then ¢ is aperiodic. 

Some of the proofs use the theory of non-singular equivalence relations and we 

provide some background. 

Let (X, B) be the standard Borel space. An equivalence relation R C X × X 

is called s t a n d a r d ,  if R is a Borel subset of X × X, that  is R is in the product 

a-field B × B. For any x E X ,  R(x )  := {y : (x,y)  C R} is the e q u i v a l e n c e  

class  of x, and for a subset A C X ,  R(A)  -- t2{R(x) : x E A)} is called the 

s a t u r a t i o n  of A. The standard equivalence relation R is called c o u n t a b l e  if 

R(x)  is countable for any x. 

For a countable, standard relation R, A E 13 ~ R(A)  E B. If G is a count- 

able group of automorphisms of X then R c  = {(x ,g(x) )  : x E X ,  g • G} is 

a countable, standard equivalence relation, and conversely, any countable stan- 

dard relation R is generated in this way by a countable group of automorphisms 

(see theorem 1 in IF-M]). A (r-finite measure # is called n o n - s i n g u l a r  for R 
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if #(R(A))  = 0 whenever #(A) = 0; it is called e rgod ic  if, in addition, either 

#(R(A))  = 0 or #(X  \ R(A))  = 0 for every A e B. 

By a h o l o n o m y  we mean a Borel automorphism ¢: A --+ ¢(A) (some A E B) 

whose graph F(¢) := {(x,¢(x))  : x e A} is a subset o f R .  A a-finite measure 

which is non-singular with respect to R is called inva r i an t  for R if #(A) = #(CA) 

for any holonomy ¢. By corollary 1 in [FM], # is invariant under R iff # is 

invariant for the action of any G with RG = R. 

The following proposition appears in [P-S] (see also [B-M]). We use the notation 

a = M±lb  for the double inequality M - l a  < b < Mb. 

2.4 PROPOSITION: Suppose that ~A is topologically mixing, and f C ~R. There 

is a unique (e-¢J, T)-conformal probability # E P(Eo),  and there exists M > 1 

such that 

±1 -Pn+~;-~ S(Tkx) (o)  ~ ( [ x l , . . . , x ~ ] )  = M e = V x e ~ ,  n > 1 

where P = max{hp(T) + fn fdp: p • 7a(E), p o T -1 = p}. 

The property (o) is known as the G ibbs  p r o p e r t y .  A T-invariant probability 

with the Gibbs property is known as a G i b b s  m easu re .  

As is shown in [Do] and [R1]: 

• 3 a unique probability It I E P (E)  such that dttf o T / d # f  = Ae- f  for some 

A > 0 ;  

• T is exact (whence 7 is ergodic) with respect to #f ;  

• 3 a T-invariant probability pf ~ #f  such that 1[ log(dpf)/(d#f)[[oo < oo; 

and 

• 3 M > 1 such that 
p n-1 

pf ( [x l , . . . , xn] ) ,  # f ( [ x l , . . . , x n ] ) =  M+le - n+~k=of(Tkx) V x • E ,  n >  l 

where P is the topo log ica l  p r e s s u r e  of f given by the v a r i a t i o n a l  p r inc ip l e  

P : = m a x { h p ( T ) + f S d p :  p•P(E), p o T  - 1 - - p } = h p s ( T  ) +  f Sdpf. 
J~ J E  

The probability p$ is known as the e q u i l i b r i u m  m e a s u r e  of S (being the unique 

maximizing T-invariant probability) and is a Gibbs measure. 

Proof of Proposition 2.4: For every admissible word c = ( c l , . . . ,  ca) and x • E 

such that Ac, x~ = 1 let (c, x) denote the concatenation (Cl , . . . ,  ca; x l , x2 , . . . ) .  

The proof relies on the characterization of (e -¢s,  T)-conformal measures as those 

measures # for which 
d# o ~/d# = e - ¢ f ( ( a ' x ) ' ( b ' x ) )  
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whenever  a = [ a l , . . . , a n ] ,  b = [bl . . . .  ,bn] are nonempty  wi th  an = b m  and 

n: a -+ b is defined by n(a,  x )  :=  (b, x). To check this  charac te r iza t ion ,  suppose  

x E Eo and set y = T(X).  By the defini t ion of the  Adic  Transformat ion ,  there  

exists  some no such tha t  for every z E [ x l , . . . ,  Xno], 

T(Z)  = ( Y l , . . . , Y n o ; Z n o w l , Z n o q - 2 , . - . ) .  

Equivalent ly,  Tl[xl ..... ~,~o] = ~ where n: a --~ b is defined as before wi th  a = 

(xl  . . . . .  xno) and b = (Yl , - . . ,Y~o) .  For  z = ( a , w ) ,  the  conformal i ty  condi t ion  

now reads  

d#  o n (a, w)  = e -¢s(a'w) = e -¢s((a'w)'r(a'w))  = e -¢s((a'w)'(b'w)).  
d#  

E x i s t e n c e  

We claim tha t  # f  is ( e -e1 ,  T)-conformal.  To es tabl ish  this,  suppose  t ha t  a, b 

and  n are as in the  above. We show tha t  

d p f  o n (a ' x )  = e - ¢ ] ( ( a ' x ) ' ( b ' z ) ) .  

d # f  

For v~: T[a,~] --+ a defined by v , ( x )  :=  ( a , x )  we have t ha t  v~ -1 = T n : a  -+ T[an] 

whence 

d # f  o Va ( d p f  o T n 

and, since ~ = Vb o v -1  a , 

dpy  o n 

))_1 
- - ( a , x  = a-neE2-2 

- - ( a ,  x )  - d#S o Vb (Tn(a ,  x)) d#S o T n 
d # y  d # f  d p y  

d # f  o V b d # f  o T n 
- ( a , x )  

= e-¢J((a,x),(b,x)).  

- -  (a ,  x )  

a = [ a l , . . . , a n ]  and  b = [ b l , . . . , a n ]  

are b o t h  n o n e m p t y  wi th  an = bn, and n: a --> b is defined by ~(a,  x) :=  (b, x) 

then  
dv o ~ (a, x )  = e -¢f((a'x) '(b'x)) 

Uniqueness  

Suppose  t ha t  u ~ 79(Eo) is (e-+S,  ~-)-conformal. I t  follows t ha t  if 
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whence 3 M > 1, Kn(s)  > 0 (n > 1, s E S) such tha t  

. . ,  M ± l K n ( x n  e~'~--~ S(Tk~) >_ 1, X E GO. P ( [ X I , .  Xn] ) : ) - ~/ 1~ 

But  

and so 

I t  follows tha t  

e~;~_~ f(Tk~) = M±leP'~pf (Ix1, • • . ,  x~]) 

v ( [ x l , . . . ,  x~]) = M±2K~(xn)ePnpf ( [Xl , . . . ,  x,~]). 

v (T-n[ s ] )  = M±2Kn(s)ePnpf([s]) 

whence ~-~sEs Kn(s)  ~ e -pn ,  u ( [ x l , . . . ,  In])  _< M ' p f ( [ x l , . . . ,  x,~]), and u << # f .  

Writ ing F := du/d#f ,  we see from d v o T / d v  = d#f  o v / d # l  t ha t  F o T = 

F m o d # f ,  whence by ergodicity F -- 1 and v -- # I .  I 

Proof of Theorem 2.1: Let a:  G -+ R be a continuous homomorph i sm.  By 

Propos i t ion  2.4 and its proof, there is a unique (e -~(~D,  T)-conformal probabil-  

ity pa  E 5°(F,0), and this measure  is equivalent to the (invariant) equi l ibr ium 

probabi l i ty  measure  P~(¢D" 

It  is shown in [G] (see also [A-D2]) tha t  if f E 7/G is aperiodic then Tf  is 

exact  with respect  to m = p × m~ where p is some equil ibrium measure  on ~.  In 

part icular ,  Tf is exact  with respect  to m~ ,,~ P~(¢D × rn~, whence ~'¢s is ergodie 

wi th  respect  to ma. | 

Now let f :  E --+ G be measurable .  If  3 a globally supported,  a-finite Tf- 
nonsingular  measure  m on E × G such tha t  (E × G, B(E × G), m, T f )  is exact ,  

then f is aperiodic.  

To see this, suppose otherwise, tha t  3 7 C G, z C S 1 and g: E ~ S 1 Hhlder 

continuous, not constant ,  such tha t  7 o f -- z~g o T. Consider G E L°~(E × G) 

defined by G(x, y) := ff(x)7(y);  then G is not m-a.e,  constant  and G o Tf  = zG. 

Thus  Tf  is not weakly mixing and hence not exact  (in par t icular ,  G is T~-'~I3 - 

measurable  Y n _> 0). 

2.5 PROPOSITION: Let f C ~G. Any Tcs-invariant , ergodic locally finite measure 

m on E × G with H,~ = G is proportional to a Maharam measure, and the 

existence of such implies tha t  f is aperiodic. 

Proof: Let m be a Tcs-invariant, ergodic locally finite measure  on E x G with 

Hm = G. By the Basic Lemma,  m has the form dm(x,  y) = e~(Y)d#(x)dy where 

a :  G --+ • is a continuous h o m o m o r p h i s m  and # is (e~°¢s, T)-conformal,  whence 
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(e¢-°s, T)-conformal. Proposition 2.4 shows that  the (unique) conformal measure 

has the Gibbs property (o), and is therefore globally supported on E. I t  follows 

that  m is globally supported and so, as shown above, f is aperiodic. | 

By possibly changing the state space, we may assume that  f ( x )  = g (x l , x2 )  

in the assumptions of Theorem 2.2. The proof of Theorem 2.2 uses Lemma 2.6 

below. 
~-1  For u: E -+ S 1 and g > 1, set at(x)  := [Ij=o u(TJx).  

2.6 LEMMA: Assume u: E --+ S 1 is Hhlder continuous, then either: 

(1) S z E S 1, g: E --~ S 1 H61der continuous, such that u -- z~g o T; 

o r  

(2) 3 e > 0, go _> 1 such that V ~ >_ g0, x • E, ~ y • E satisfying 

x l  = y l ,  T~y  = T %  and  [ut (y)  - u~(x)l > ~. 

Proo~ Let L: C ( X )  -+ C ( X )  be the operator (L f ) ( x )  = ~ T y = x  f(Y)" Ruelle's 

Perron-Frobenius theorem implies that  ~A > 0, a Borel probability measure v 

and a positive continuous function h such that  L*~, = A~, Lh = Ah, f hdv = 1. 

Moreover, u and h are uniquely determined up to a multiplicative constant, and 

V f  • C ( X ) ,  A - n L n f  -+ h f f d v  uniformly on E. Let P be the operator 

It  is not difficult to check that  P1 = 1 and that  if ~: E --+ S 1 is continuous and 

P g ~ -  1, then ~ ~ 1. 

Let P~ be the perturbed operator P ~ f  := P ( u f ) .  One checks that  for every n, 

P~ f = P n ( u n f )  = A-UL n u,~f . 

In [G-HI it is shown that  either Sz • S 1 and 3g: E -+ S 1 HSlder continuous such 

that  P~(g) = zg, or I]P2fll~ ~ o for every f • C(E).  

We show that  if (2) fails, then [I ~ fl[oo 74 0 for some f • C(E).  This proves 

the lemma, because it implies that  3z • ~1 and 3g: E -+ S 1 HSlder continuous 

such that  P~(g) = zg, and Pu(g) = zg implies that  P ( ~ u )  = 1, whence 

u = z °a~T-. hdp is known to be ergodie and globally supported (see, e.g., [R2]). g 

Therefore ]gl-- 1 and (1) follows. 

I f  (2) fails, Ve > 0 there are x (k) • E, 1 _< gk $ oc such that  if 

y • E, k _> 1, x~ k) = Yl and T t k x  (k) = Tt*y  
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then 

luek(xCk/) - uek(Y)l < ~. 

By possibly passing to a subsequence, we can ensure tha t  3a • SVk > 1, x~ k) 

Set 

70 := m i n ( h  ~ : x , y  • 

Since E is compact ,  3'0 > 0 and 

IIn~'l[a]l]~ _> I(P~l[~])(Te~x(k))l 

ye~, h(y) u 
= Z - -  ek(Y)ltol(y) 

Ttky=Ttkx(k) h(TekY) 

_> ~/oA -ek ~ (1 - l u e ~ ( y )  - ue~(x(k))l)lM(y ) 
yEE, Ttky=Ttt~x(k) 

_> 3'o(1 - ~)A -ek L ek 1[~] (x (k)) 

Since A-n(Lnl[a])(x) tends uniformly to h(x)u[a], we have tha t  

~ a .  

linm inf IIP~lt~]ll~ ' 7o (1 -  e)x~i~ h ( x ) >  0 

as required. | 

If u: VV2(E) -+ $1, u(x) = u(x l ,x2)  and a C ~/Yn+l is a pa th  a = ( a l , . . .  , a n + l )  

of length n, then u,~ is constant  on a. We denote 

un(a) : =   nlo = [ I  u(a , 
i=1 

In Lemma 2.6, when u(x) = u(xl ,  x2), (2) has the combinatorial  form: 

(2') ~ /~o such that V ~ _> ~o, paths a = ( a b . . . , a t + l )  C We, 3 a path b = 

( b l , . . . , b e + l )  E We such tha t  al = bl, ae+l = be+l and ue(a) 7 ~ ue(b). 

Proof of Theorem 2.2: By the Basic Lemma and Proposi t ion 2.4, it suffices to 

show tha t  Hm = G. 

Suppose otherwise tha t  H ~ G; then 3 7 E G, 3' ~ 1 such tha t  ~'IH ~ 1. 

Since m is Tcf invar ian t ,  it is also f (Tf ) - inva r i an t  and if n: A --+ n(A) 

(A • B(E × G) is a ~(Tf)-holonomy,  then m(n(A))  = m(A) .  

Using aperiodici ty and Lemma 2.6, we fix / > 1 so large tha t  V paths  a -- 

( a l , . . . , a e + l )  • Pe, 3 a pa th  b -- ba =- ( b l , . . . , b e + l )  • Pe such tha t  al  -= bl, 

ae+l = be+l and 7 o re(a) ¢ "y o re(b), equivalently re(a) - re(b) ¢ g .  
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Set J :-- { f e ( a ) -  fe(ba) : a E Pe}; then J C G \ H  and J is finite. Set 

:= ~ j e J  moQj;  then ~ l m and 3 K C E x G compact such that re(K) > 0, 

m(K)  = O. 

Set M = IWel. Approximating K by larger precompact open sets, we see that 

3 U C E x G open, U compact such that K C U and re(U) < m ( K ) / 2 M .  

For each z = (x, y) E K 3 a set W(z)  =- C(z) x V(z)  of form cylinder x open 

such that z E W(z)  C U. By compactness of K 3 Zl , . . . ,  ZN such that K C V :---- 
N Uk=i W(zk).  We claim that V is a disjoint union of sets of form cylinder x open. 

To see this, let L be the maximum length of the cylinders C(Zl), • . . ,  C(zN); then 
N N 

V = Uk=l W(zl¢) -- Uk=i U~wL,  ~cc(~k)c x V(zk) a disjoint union. Thus 

K C V and re(V) < m ( V ) / 2 M .  

It follows that 3 a set C × W of form cylinder x open such that m(C x W) > 0 

and ~ ( C  x W) < m(C x W ) / 2 M ,  otherwise V would not have these properties. 

Since C × W = Uaewe(C,a) x W,  3 a E We such that m((C,a)  x W)  >_ 

m(C x W ) / M .  

Next, 3 b -- (bi , . . . ,be+i)  E We such that al = bl, ae+i = be+l and 

fe(a) - fe(b) E g. 

Define T: (C,a) x W --+ C x G  by ~'((C,a,x),y) := ( (C ,b , x ) , y+  fe(b) - re(a)). 

Evidently ~- is a E(Tf)-holonomy and so by assumption, m('r((C, a) x W))  -- 

m((c, a) × w)  > ,~(c × W)/M. 
On the other hand, T((C, a) x W))  C Qft(b)-fe(a)C x W whence 

.~ (c  × w )  
M 

<_ m(T(C, a) x W)  < m(QI~(b)-l~(a)C x W) 

m(C × W) 
<_ m(C x w)  < 

2M 

1 and ~ > 1. This contradiction establishes Theorem 2.2. | 

Remark: The proof of theorem 2.2 establishes the (stronger) statement: 

Suppose that f :  E --+ G is aperiodic and has finite memory. 

I f  m is an ergodic, E(Tf )-invariant locally finite measure on E x G, then m = 

crn~ for some continuous homomorphism a: G -+ R and some c > O. 

We conclude this section with an application of Theorem 2.2 to the "Markov- 

Pascal-adic" transformations considered in [P-S]. 

Let E = EA be a mixing subshift of finite type and let f :  ~, -+ G. We use the 

notation 

x~J := (x~, ~+1, . . . , x j ) ,  xF = (x ,x~+l , . . . )  (x e r,). 
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Recall from [P-S], the equivalence relations: S + C EA x EA defined by 

CO CO S + = { ( x , y )  e E A X E A :  3 n > l ,  x n =y ,~ ,  

(Yl, . . . ,  Yn) a permutation of (Xl, . . .  , Xn)}; 

and SA y C EA x EA defined by 

Ay OO OO S : = { ( x , y ) • E A X E A :  3 n > l ,  x n = y ~ ,  f n ( x ) = f n ( y ) ) .  

Evidently S + = S F# where F # : E --+ Z s is defined by F # ( x l , x 2 , . . . ) i  := 5~,~ 

(i • s ) .  
Suppose that  (} is discrete. Evidently if f :  E -+ (} then 

(~,y) • say .=> ((x,0),(y,0)) • ~ ( T I )  

whence 

(x, y) c sAY n r~o ~ ¢= .  ~ n c z,  (y, 0) = ~ ;  (x, 0) 

and SAY A Eo 2 is generated by the induced transformation (T¢S)Eo×{0 }. 

We claim (as in [P-S]) that if f has finite memory and c~: (} --~ R is a homo- 

morphism, then #a is SA/-invariant, ergodic. 

To see this, recall from Theorem 2.1 that ms is T~finvariant, ergodic; 

whence mal~ox{O} is (TCs)~.ox{o}-invariant , ergodic; whence our claim (since 
m~(A × {0}) = #,(A)).  

2.7 COROLLARY: Suppose that f:  Z -+ Z d (d >_ 1) is aperiodic and has finite 

m e m o r y .  

I f~  E 5°(E) is SAy-invariant and ergodic, then v = #c~ for some homomorphism 
OL: Z d --')" R .  

Proof'. We'll deduce this from Theorem 2.2. To do this, we show first that 

v(~  "-. r ,o)  = 0 .  

We claim that all SAy-equivalence classes are infinite (this implies that u is 

non-atomic, whence u(E \ E0) = 0 as this set is countable). 

To see this we'll need the s y m m e t r i z a t i o n  F of f defined on the mixing SFT 

E x E by F(x,  y) = f ( x )  - f ( y )  (F: E x E --+ g d ) .  Evidently F has finite memory. 

We claim that  F is aperiodic. If not, then 

g(Tx,  Ty) (x, e E )  e 2 r i q ( I ( x ) - f ( y ) )  = z  y 
~(x,y) 
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for some q • Z, q ~ 0, z • S 1, g: E × E -4 S 1 and then 

e 2~riq(fN(x)-fN(y)) = z N g ( T N x ' T N y )  V N >_ 1, x , y  • E. 
g ( x , y )  

Choosing N > 1 and periodic points y = T g y ,  y' = TN+ly  ', we have, for all 

x • Eo, 
• ~ ( T N + l x  y)  

e27riqfg(Tx) =e2~r~q]N(Y) z N Y\  ' 

, N + I  ! 
e27riqfN+l(x ) _e21riq]N+l(y ) zN+lg(T  x , y  ) 

- , 

whence (!) 

e 2~iqf(~) = z G ( T x )  

contradict ing the aperiodicity of f .  

Let # be the measure of maximal  entropy on E and let P :  L 1 (# × #) -+ L 1 (# × #) 

be the transfer operator.  By the local limit theorem of [G-HI, 3 c > 0 such tha t  

V cylinders a, b C E, 

nd/2pn(l(a×b)n[F,~=O])(X, y) -+ clt(a)#(b) uniformly on E × E as n --~ c~. 

Now fix x E E and N >_ 1; then 3 nN such tha t  

nd/2pn(l@]×[b])n[Fn=O])(Tnx, TnX) > 2tt([a])#([b]) V a, b G ~/VN, n > nN 

whence 

I{Y • X: (x,y)  • SfA}I > I{Y • X: TnNy = T ' ~ x ,  Fn~,(x,y) = 0}1 

>- I NL -+ 

as N --+ cxD and establishing our claim. 

As mentioned above, ~(E \ Eo) = 0 and the probabil i ty ~ on Eo × {0} defined 

by ~(A × {0}) = v(A) is (T~s)~×{0}-invariant and ergodic. Define the measure 

m on Eo × Z d by 

o k=0 

The measure m is evidently locally finite. By Kac 's  formula, it is T~s-invariant , 

and by Kakutan i ' s  tower theorem it is ~-¢fergodic (see, e.g., [A1]). Thus, by 

Theorem 2.2, m = m~ for some homomorphism a:  Z d --~ ~. It  follows tha t  

~ = # ~ .  I 
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2.8 COROLLARY: Suppose E is a mixing, almost onto SFT. 

I f  ~ E P(E)  is S+-invariant and ergodic, then u = #~ for some homomorphism 
0~: Z d -'~ ]~. 

Proo~ As mentioned above, SA + = S F# where F # :  E + Z s is defined by 

F#( x ) i  := 5i,~1 (i E S). Since evidently Group(F#(E)  - F # ( E ) )  = Z s, F # is 

aperiodic by Proposition 2.3. The result follows from Corollary 2.7. I 

Remark: Theorems 2.9 and 2.11 in [P-S] both  follow from Corollary 2.8. In 

both  cases, S = {0, 1}, d = 1 and E is almost onto. 

§3. A l o g a r i t h m i c  e r g o d i c  t h e o r e m  

As in §2, let S = { 0 , 1 , . . . , s  - 1} where s E N, let A: S × S --+ {0,1} be an 

irreducible and aperiodic matr ix  and let E = E + C S N be the corresponding 

(topologically mixing) subshift of finite type. Recall that  T: Z --+ E is the left 

shift, T: E0 --~ E0 is the induced adding machine, where E0 is obtained from E 

as in §2. 

In this section, we consider the asymptotic properties of TCs, where f :  E --+ 

~ is an aperiodic Hhlder continuous function, with respect to Maharam mea- 

sures. It  will be convenient to use the supremum norm on R d, ] l (x l , . . . ,  Xd)]l := 

maxl<k<d Ixkl, 
Fix some c~ E ]~d and consider the Maharam measure m~: /3(E x ]~d) __+ [0, oc] 

defined by dm~(x ,y )  = e-~'Udit(x)dy where it = ita is the (e~'f,~-)-conformal 

measure. 

As mentioned above, the aperiodicity of f implies that  TI is exact with respect 

to m~. It  follows that  T¢i is ergodic with respect to m~ (generating the the tail 

relation for Tf) and also conservative (being invertible, ergodic and preserving a 

non-atomic measure). 

We prove the 

LOGARITHMIC ERGODIC THEOREM: 

n--1 O Tq~y log ~k=o F hp, (T) 
(~:) logn + htop(T) ma-a.e,  as n --+ oc 

VF E Ll (m~)+  where pa is the equilibrium measure of a .  f . 

I t  will sometimes be convenient to denote 

= : =  F 
k=O 
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The  proof  of the logari thmic ergodic theorem is based on the following two 

reductions: 

Firstly, it is sufficient to establish ($) for a single Fo E Ll(mc,)+ since then, by 

the rat io ergodic theorem,  

Sn(F) Ix Fdm 
- -  a.e., 

S~(Fo) f x  Fodm 

whence log S~ (F)  ~ log Sn(Fo) a.e. 

Secondly, in order to establish (:~) for F0 C L l ( m ~ ) + ,  it is sufficient to find: 

• sets A, B c B(E x N d) with ms(A), m ~ ( B )  > 0 and 

• ( random) subsequences Mk: A --+ N, k: B --+ N such tha t  Mk, Nk J" oc, 

logMk ~ logMk+l ,  logNk ~ logNk+l  as k -+ oo; 

satisfying 

,. log SMk (Fo) hp~ (T) 
(~) u m s u p  7- -~- ; -  < on A, 

k--~ log ivlk -- htop(T) 

and 

log SNk (Fo) hp~ (T) 
(~) l im inf > 
- k--,oo logNk - htop(T) 

on B. 

To see this, note tha t  V n large 3 k = k~ _> 1 such tha t  Mk _< n _< Mk+l ,  

whence 
log S,~(Fo) < log Sfk+, (Fo) 

log n - log Mk 

and it follows from log Mk ~ log Mk+l  tha t  

lira sup log S,~ (F0) __= lim sup log SM~ (Fo) 
n - ~  log n k--,oo log Mk 

Similarly 

The  functions 

lim inf log S,~(Fo) _ l im inf log SNk (~,Fo,. 
, ~ - ~  log n k - ~  log Nk 

l imsup  logS~(F0)  and l iminf  logS~(F0)  
n-~o¢ log n n-~¢ log n 

are TcFinvar iant  , whence so are the sets 

, o g .  - h,o (T)J' - -  log,  - h , o d T )  " 
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By ergodicity, both sets (containing sets of positive measure by (~) and (_~)) are 

of full measure and (~:) is established for Fo. 

In the Main Lemma (below), we'll establish ({) and (~_) for Fo = 1gxB~z(0) and 

A = B = E x BM,(0) (for some M , M '  > 0 where BM(0) :=  {y e ]~d: [[y[[ _< M}) 

using the local limit theorem of [G-H] and large deviations techniques. 

The subsequences Mk, Nk are related to some counting functions, which we 

proceed to define. 

We define the c o u n t i n g  func t i ons  An: EA -+ N by 

An(x) := min{N > 1: {(rkx)~: 0 < k < N -  1} = Wn} 

where Wn denotes the collection of admissible words of length n (as in §2). 

The reader may easily verify that in case E is a full shift, An = s n = [Wn[ 

and consequently k ~-+ (rkx)~ defines a bijection {0, 1 , . . . ,  s n - 1} +-~ Wn V x 

E. In other words, r generates X-equivalence classes efficiently. For a mixing 

topological Markov shift, as shown by the counting proposition below, the 

situation is analogous. 

3.1 COUNTING PROPOSITION: Suppose that ~A is a mixing topological Markov 

shift, and that L >_ 1 is such that all entries of A L are positive; then for x C To: 

IWnl _< An(x) < 31Wn+LI. 

Prook The left hand inequality follows directly from the definition of An (x). To 

see the right side, assume by way of contradiction that AN(x) >_ 3[W,~+L[; then 

there is a word _a c Wn+L and 0 < kl < k2 < ka _< An(x) - 1 such that rk¢x C [_a] 

for k = 1,2,3. Set rk¢x = (_a,z(/)); then zO) -< z(2) -< z(a). For every g_ c Wn 

choose some point of the form x(e__) = (e_, w L - l ,  z(')) where w L-* is some word 

which makes x(c_) admissible. Clearly, rk~x -< x(e_) -< rkax. Thus Wn is spanned 

by rJx for 0 < j < k3 in contradiction to the minimality of An(x). The right 

hand inequality is thus proved. | 

Set ~ := exph~op(E) and assume without loss of generality that L > 2, where 

L is as in Proposition 3.1. For every x E E0 and n large enough set 

! 
un(x) := min{u > n + L: x~- i  < Pm~x(x,,)}, Un : :  Un -- L, 

gn(x) := max{£ < n + L: xg-1 ( Pmax(x~)}, gk := tn - L, 

where Pmax is as in §2. By possibly adding a vector of constants to f ,  we may 

assume that f fdp~ -- ( 0 , . . . , 0 )  (note that neither Cf nor pa change when a 

constant is added to f ) .  
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p , ~ : = ( n + L ) - t , ~ ,  a n : = u n - ( n + L ) .  

3 .2  LEMMA: ~ M o  E ~ +  s u c h  t h a t  

lim sup p'~ ~r,, l i m s u p - - <  Mo a.e. 
n - ~  1-~gn' n-~o~ l o g n -  

Proof: We prove this only for an, the proof for Pn being essentially the same. 

Set P := Prop (a. f) .  Recall that  E ~  consists of at most s points, all of which are 

periodic. Set E ~  = {x0),  x(2) , . . . ,  x (r) } and let p be the least common multiple 

of the periods of x(i); then r _< s and, for every x E E~,  TPx = x. Define by 

induction pk+ l  Pmax o a - max = Pm~ax . By the definition of an, if a,~(x) > b then 

b Tn+Lx C [P~ax(Xn+b+L),..., Pmax(Xn+b+L), Xn+b+L]. 

For b > s the word b 5-8 (P~ax(X,~+b+L),..., P~ax(Xn+b+L)) is made of a repeating 

period, hence is the prefix of a maximal point. Applying this argument to bn :-- 
[M0 log nJ, using the invariance of p~ and the structure of E ~ ,  we have 

r 

x( 0 ] p°  > bo] < ' ) , . . . ,   °-sj • 
i=1 

Since p~ is a Gibbs measure and since for every i, T P x  (i) "~ X (i) , 

whence 

(1) p ,  Jan > M0 logn] = O n M°' ~ - ' 1 .  
\ i = 1  / 

It  follows from the unicity of the equilibrium measure that  a .  fp (x(O)/p < P. 
Thus, the exponents in (1) are all negative and for M0 large enough, 

o ~  

E Pa [an > Mo log n] < c~. 
n ~ l  

The result follows. | 

The next lemma is the main lemma, being the version of (~) and (_~)) that  we 

prove. Let 
o o  

B := 2L]lfl I + E v k ( a "  f )  
k= l  

where Vk(a" f )  ---- sup{tc~" ~(X) -- (~-~o(y)l : XO k - 1  = yok-1}. 
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3.3 MAIN LEMMA: There exists M > 2B for which 

(2) limsup ! IOgSA.,_I(1EXBM(O)) ~_ hp. (T) ma-a.e, on: E x BM/2(0), 
n --~ c~ I t 

(3) lim inf i log She._ 1(1~ x aM (0)) --> hp~ (T) ma-a.e, on: E x BM/2 (0). 
n-+oo r$ 

The rest of this section is devoted to the proof of the main lemma. Set 

UN (x,M) := {e_ C WN : Vy C [~] [[fg (Y) -- f g  (X)[[ < M},  
N - 1  V g ( x , M ) : = { y e E o : V z e  [Y0 ] I I f N ( z ) - - f N ( X ) I I < M }  

= U H 
e_EU.(x,M) 

3.4 LEMMA: For each M > 2B, 3M1, 2142 > 0 such that for all (x, t) E Eo × 

BM/2(O ) and n large enough, 

h~,-1 

]Ut-(x, M2)] < E I~×BM(0)(T~S (x , t ) )  
j=O 

and 

Proo~ 

A~, - 1  

j=0 

Fix some x E Eo and t c R d. We estimate 

AN--1 

j=O 

! ! 
for N = un, ~n" 

It follows from the minimality of A,~ that V0 _< j < AN - 1, T N+L (TJx) --- 

T N+L (x), because all the entries of A L are positive, so V e_ E W,~ there exists 

c E WL-1 such that (~,__c, P m a x ( X N 4 . L ) , X ~ _ k L  ) is  admissible and strictly larger 
j--1 (TkX)  than x. Thus Zk=O ¢1 = fN+L (x) -- fN+L (TJX), whence 

AN ---- II {0 _< j <_ AN -- 1: IIIN+L (~Jx) - SN+L (X)- tll <_ M } .  

Since for j < AN, (TJX)~+ L = X~+L, the map j ~-~ ('rJx) N+L-1 is 1-1, so 

AN = IBNI where 

BN { / j ,~N+L-I = ~ Xjo : N:N+~ (~Jx) - :N+~ (x) - tll <_ M; o < j < A N }  
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' in the above inequality We now prove the required inequalities. Setting N = u~ 

we have V(x, t) 6 E0 x BM/2(O ) 

Au,  - - I{(T/x)~n-l :  ]Jfun (Tjx)  - fu,~ (x) - t]] <_ M; 0 < j < A%} l 

<[{s_E_ 142~ n :Vy E [e_]llA,,(y)- An(x)ll <_23-M + B } I  

and the upper inequality follows with M1 := B + 3M/2 .  

Using the same argument for N = g~ one shows that  for all (x, t) E E0 × 

BM/2(O ) and n large enough so that g~ is well defined, 

Ae~ Z 

: r y e  ( Jx/o Ilfe,n(y)-fe.(x)ll< y - B o < _ j < A e ,  " 

{ -);-1 } 
Since (rJx n :O_<j_<Ae--i :We-, 

I{ " } Ae. >_ e_ e We.  : Vy e [e_]Hfe. (y) - fe (x ) l l  < V - B 

and this is the lower inequality for M2 := M / 2  - B. | 

The following lemma provides, together with Lemma 3.4, the upper estimation 

(2) in the Main Lemma. 

3.5 LEMMA: VM > 0 lim,~__+o~loglUn(x,M)] <_ hp, (T) m~-a.e. 

Proo~ Since p~ is the Gibbs measure for a .  f ,  there exists some constant K 

such that for all y G [s; ' - l] ,  

n - - 1  By the definition of Um for every go C U~ (x, M) and y C [e~-l],  

Pa [c~ -1] ~ eC~'L~(y)-np(c~I) ~ ec~l~(x)-nP(~"f) 

whence 
p,~ (V~ (x, M)) 

(x,M)I × s )  

Thus, IU,~(x,M)I = 0 ( e n P ( " f ) - " ' A ( x ) ) .  Recall that according to our assump- 

tions, f c~. fdp,~ = 0, so P (o~. f )  = hp, (T).  The lemma follows since by the 

ergodicity of p~, for almost all x E E0, ~" f~ (x) = o (n). I 

We now turn to the lower estimation (3) in the Main Lemma. 
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For every N C N and 5 > 0 set 

(5):-- > 

By the definition of UN(X,M), VM > 0, x • E0 and N > 0, 

(4) ]UN(x, M)I _> e N(h~" (T)-~) [pc" (Vg (x, M)) - Pc, (EN (5))]. 

We prove that  

Isr.  J .  M a t h .  

whence 

Pro of: pc" is a Gibbs measure, so 3K such that Vn V y 

pc" [y~-l] < Kec"l,,(y)-nP(a'l ) 

Since p~ (c~- f) = 0, P ((~- f )  = hpo (T). Thus, for n large enough 

E ,  (5) C {y e E :  a .  In (Y) > n5/2}. 

We will prove that 

nm l l o g p ~  {y • E :  ~ .  In (Y) > n5/2} < 0 
n~oo n 

using large deviations theory for the pc'-distributions of c~ • f~. 

Using the HSlder continuity of f and the Gibbs property of pc', it is not difficult 

to prove that the following limit exists for q E N (see [Bo]): 

lim 1 logEp. (e qc''$'~) = P (a. f + qa. f)  - P (a. f) =: c(q) 
n---+ o~ n 

where P(-) denotes topological pressure and Epo denotes expectation with respect 

to pc'. 
By standard large deviations theory (see, e.g., theorem II.6.1 of [Eli): 

l i m s u p l l o g p ~ { y • E : a . f , ~ ( y ) > n S / 2 } < _ -  inf I(p) 
n---~oo I t  p ~ 5 / 2  

1 
lira - logpa (En (5)) < 0 pa-a.e., 

n ~ o o  n 

lim 1 logpc" (Vn (x, M)) = 0 pc'-a.e. 
n-+oo n 

Since for almost all x E Eo, ~ (x) ~ n, (3) will follow from this, (4) and Lemma 

3.4. 

3.6 LEMMA: l i m n ~ o ~  logpc" (E~ (5)) < 0 p~-a.e. 
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where I (p)  is the Legendre-Fenchel transform of c(q) defined by 

I (p):---- sup { p q -  e (q ) } .  
q 

We outline the (standard) proof that infp>~/2 I (p)  > O. 

By theorem 5.26 in [R1], c (q) is C 2 in R (see also [G-H]). By aperiodicity, a .  f 

is not cohomologous to a constant and therefore (see [G-HI) 

c ' ( q ) = p q ( a . f )  and c"(q) > 0  

where pq is the equilibrium measure of (1 + q ) a .  f .  It follows that I (p) = 

qop - c(qo) where q0 is the maximum point for q ~-~ qp - c(q) satisfying 

0 = p - c' (qo) = P - Pqo ( a .  f )  

whence 

I(i9) = qoPqo ( a .  f )  - P [(1 + qo) a .  f] + P ( a .  f ) .  

By the variational principle, 

P [ ( I +  qo) a"  f] = hpq ° (T) + pqo ( a .  f + qoa" f ) .  

Thus, 

I (p) = P (a .  f )  - (hpq ° (T) q- Pqo ( a .  f ) )  > 0 

for p ~ 0, because then Pqo ~ Pa (since pqo(a,  f )  = c'(qo) = p ~ 0 = pa (a"  f ) ) .  
Since I is finite and convex (being the the Legendre Fenchel transform of the 
convex function c), it is continuous, whence infp_>~/2 1 (p) > 0. I 

3.7 LEMMA: There exists M3 > 0 such that  V5 > O, forpa-a.e, x E ~o, 3 N1 E N 

such that  Vn > N1 3 n I < 5n, ~ C W~, satisfying 

IIS , (y) - In (x)ll < M3 Vy e k] .  

Proof." Fix some 51 > 0 (to be determined later). By the Ergodic Theorem, 

for p~-almost all x C E, ]Ifn (x)]1 = o (n), so there exists N1 = N1 (x, 5') such 
k oc that Yn > N1, Nfn (x)ll < 5'n. Since f is aperiodic and p~ (f)  = 0, { f  o T }k=l 

satisfy a local limit theorem with respect to p~ (see [G-H]). Thus, 3k0 C N and 

c > 0 such that V (Wl,.. .  ,Wd) E {+1,--1} d, k > k0, 

p~ [Vi 3B  < wi(.fk)i < 4B] _> c /k  d/2 
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where (fk)i denotes the i- th coordinate  of tha t  vector. In part icular ,  for every 

w = ( w l , . . . ,  Wd) e {+1 , - -1}  d, there exists u(w) • Wko such tha t  

(5) Vz • [_u(w)] Vi 2B < wifko (Z) i < 5B. 

I t  follows tha t  for every _c • )/YL such tha t  u(w)c • )4; and Vz • [u(w)_c] and Vi 

B < wifko+L (z) i < 6B. 

We use u_(w) to construct  ¢_. Fix  some n > N1 and 1 < i < d. We begin by 

construct ing words ¢_i • ]/V~, such tha t  If_ i] < 5'n and such tha t  for N = l¢_iI and 

all z • [¢__i] 

(6) lfN(Z)j I < 7B for j ~ i, 

(7) I f y ( z ) j  - f n (X) j ]  < 7B forj  = i. 

We construct  by induction sign vectors w k = (Wlk,...,Wd k) and words c k • )/Yn 

such tha t  for all k, v k := (u(w 1), _c 1, _u(w2),. . . ,  c k -  1 u(wk)) is admissible and such 

tha t  (6) holds for all z • [v k] with N = Nk := Ivk[._ Choose w 1 = (w11,.. ., w ld) by 
1 wi = sgnf,~(x)i. Assume v_ k has been chosen and choose some z • [u_k]. Define 

w k as follows: if Ifyk(Z)i -- fn(x)il  < 7B, stop and set ¢_i := v_k; else set for j = i 
~)k+l j :-= sgn(fn(X)j - fNk(Z)j),  and for j ¢ i, w k+l  :---- --sgnfNk(Z)j .  Now set 

v k+l :---- (vk,ck+I,u(wk+I)) where c k+l • ]/~L is some word which makes v k+l 

admissible. Since at  each step we get nearer  to fn(x) i  in steps bounded from 

below by B, this procedure will s top after  less than  ]lfn(x)il/B < 5 'n /B  steps, 

so ]~-il -< 5'n(ko + L ) / B .  I t  can be easily verified tha t  E_ i satisfies (6) and (7) for 

N =- ]s_ iI. Now consider 

~_ : =  (C_I,c1,c_2,. . . ,c.d-I,~_ d) 

where cJ • ~L make the above word admissible. The  length of ¢_ is less than  

Ld + d(5'n(ko + L ) / B )  so, by choosing 5' small  enough and n large enough (i.e., 

N1 large enough),  we can make this length smaller  than  5n as required. Also, it 

follows f rom the construct ion of ¢_i tha t  for all z • [e__], 

llfl~l(z) - fn(x)l I < 8Bd. 

The l e m m a  is thus proved for M3 := 8Bd. I 

3.8  LEMMA: 3 C > 0, N2 C N such tha t  Vn > N2 

{y c Vz e [yg-1] IIf  (z)ll < 2B} > d/2 
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Proof'. The probability in question is bounded from below by p~ []lf-lJ < B], 

and this in turn is bounded below by the local limit theorem. | 

3.9 LEMMA: There exists M4 > 2B such that for almost all x E Eo 

] (X, M4)) 0 p(~-a.e. lina,~_~ n logp~ (V,~ = 

Proo~ Fix some arbitrary 5 > O. Fix 

N4 > max{N, ,  (N2 + L)/(1 - 5), (N3 + L)/(1 - 5)} 

where N,  and N2 are given by Lemma 3.7 and Lemma 3.8; and N3 is large enough 

to ensure that e -6n < c/u 'V2 for n > N3. 

Assume n > N4. For almost all x c E0 and all t E R S¢_ = ¢_(x) E Wn, such 

that n ~ < 5n and 

Vz ~ [e_] Ilfn' (z) - fn (x)ll < U3, 

> e -hn.  

Set 
: :  1j IJso (z)II < :-}. 

Consider the set 

One checks that V~ C Vn (x, M4) where M4 = M3 + 3B. We estimate the 

measure of V~. Since p~ is a Gibbs measure, there exist a constant K1 > 1 such 

that [a], [b], [_a, b] ~ 0 :=~ p~ [a_, b] > g { ' p ~  [_a]p, [_b] and there is a constant K2 

such that V a c )4;N p~ [a] > K2 y .  Set 

then 

{[o 1 } W ~ : :  y : y E W  ; 

p. (y~) > K~'K~ (~'+~) ~ p. [a] > K~-'K~(~'+L)p. (W). 
[gJEW' 

Thus, p~ (Vn) > K~'K2LK2~'~e -~'~. Since the above is true for all n such that 

n ~ N 4 ,  
1 

lira - log V~ (x, M4) _> - 5  (1 + log K2).  
n--+oo/1~ 
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Since 5 > 0 is arbitrary, the lemma is proved. | 

As mentioned above, Lemma 3.6, Lemma 3.9 imply via (4) that 3M > 2B 

such that 

liminf ~ loglUn(x,M)l > hp.(T) a.e., 
n -..+ cx3 n 

whence (using Lemma 3.4) we have (3). This proves the Main Lemma, and the 

logarithmic ergodic theorem. | 

§4. B o u n d e d  r a t i o n a l  e r g o d i c i t y  

Recall from [A2] that a conservative, ergodic, measure preserving transformation 

(X, B, m, T) is called b o u n d e d l y  r a t i ona l l y  e rg o d i c  if there is a set A C B, 

0 < m(A) < ¢c such that 3M > 0 such that for all n > 1, 

(~x) 1A o T k <_ M 1A o T k d m .  

k=0 

The rate of growth of the sequence 

_ 1 fA n-1 a, re(A) 2 Z 1A o Tkdm 
k----0 

does not depend on the set A C/3, 0 < m(A) < oc satisfying (*). This sequence 

is known as the r e t u r n  s e q u e n c e  of T and denoted an(T) (see [A1]). In this 

section we prove the following theorem: 

THEOREM 4.1: Let E be a topologically mixing subshift of finite type, let # be 

the (1, T)-conformal measure and let f C 7-l~ be aperiodic; then T¢f is boundedly 

rationally ergodic with respect to m o =  # x tara and 

n 

an(TCs) × (logn)d/2" 

To prove Theorem 4.1, we show that for A = 

3 0 < c < C < cc such that 

x BM(0), M large, 

fA Cn cn < Sn(1A)dmo, IISn(1A)IILoo(A) < 
(logn)d/2 -- -- (log n)d/2" 

As before, these estimations are first carried out along counting function 

sequences using the local limit theorem. We begin with the upper estimation. 

Let p0 be the measure of maximal entropy on E. It is known that dpo = hod# 

where h0 is bounded away from zero and infinity. Since Cf is invariant under 

addition of constants to f ,  we can and do assume that Epo (f)  -~ (0 , . . . ,  0). 



Vol. 128, 2002 

LEMMA 4.2:  

INVARIANT MEASURES AND ASYMPTOTICS 127 

V M > O, 3 A(M) > 0 such that 

Po[ l l fn( ' ) -b l l  < M ] < A ( M ) n  -d/2 V b c ]R d, n E N. 

Proo~ Set F := [I[yI[ _< M] C ]R d and fix s o m e a = a ( M )  • (0,1) such tha t  

d (s inayi~2 
l F ( Y l , . . . , y d )  -< 2 H - -  = 7(Y) 

i=1 \ ay~ / 
where "~ is the Fourier t ransform of 

:= 7r l[lltll<-2a](t) l - [  ( 1 -  ] I)" 
i=1 

It follows tha t  

Po[Hfn - bH < M] =Epo(1F( fn  -- b)) 

_<Epo (7(fn - b)) 

_ 1 lip e~b'tEpo (e -it'IN)'Y(t)dt 
(2~r) d/2 ItlJ_<2a] 

1 f[I IEpo(e-it'I")l 7(t)dt =: An(M).  
-< (27r) ~/2 Ltll_<2~] 

Note tha t  the last term, An(M) does not depend on b. 
As shown in [G-H], there exist e > 0 and )~: [I]" I[ < e] --+ C such tha t  )~(t) = 

1 - ct 2 + o([[t[i 2) as t --+ 0; and that  for some 0 < 0 < 1, 

Epo(e-it.y,) = ]/~(t)  n + O(0n), Iltl[ _< ¢, 
[ O(On), lltt} e [¢, 2hi. 

Making e smaller if necessary, we assume tha t  for all IIt[] -< e, 

[~(t)l _< 1 - lct2 <_ ~--ct z" 

Using the above to est imate An(M) ,  we have tha t  for some K > 0, 

An(M) (x fNitll___2~],. IEpo(e-U'Y')l 7(t)dt 

_<2 L,]riltll_<~] [A(t)[nT(t)dt + (4a)aKO n 

2 n 
-<n~f [ l lT i l<~ /~  ] /~(~nn ) 7( -~n)dT+(4a)dKOn 

2 

~27(0)n d/~ ~ a  e-Cr2dr" 
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The lemma follows from this. | 

Set B := L[[fH~ + ~ k > 0  vk ( f )  where L, as usual, is some number such that  

all the entries of A L are positive. Fix some M > 4B, set 

A := Eo × [[[t[[ _< M] 

and ~a(x, t) := 1A. 

LEMMA 4.3: There is some C1 > 0 such that for almost all (x, t), 

A N 

< Clnd/2. 
Proof: Let s be the number of states of E, set Lo := L + s + 2, and define 

u~(x)  := inf{u >_ n + Lo: x~ - i  < Pmax(x~)}, 

en(x) := sup{e <_ n + Lo: x~-i  < Pmax(x~)}- 

For po-almost all x E E these are finite. For such x we have the following 

representation: 

I ~ n - - 1  n u n - - ~ n - - l l  \ o o  
X = IX 0 ,/-'raax I, Xu , , -1] , . . . ,  Pmax(Xu,~-l), xun-1,  Xu,~). 

Define kn (x) E N by the equation 

( p . . u n - l [  x ~ . . x ° °  

If  b > x ~ _  1 is the minimal state such that  bx~, is admissible, then 

) ---- (Pmin (b) , . . . ,Pmin(b) ,b ,  xu~). 

We estimate Sh~ 1A by breaking it into two members: 

SA~(~)(1A)(X,t) ---- Skn(~)(1A)(X,t) + SA~(~)-k~(~)(1A)(~-+S (x , t ) )  

k~(x)+ll 
<_ Sk~(x)(1A)(x, t )  + SA,(~k~(~)+~)(1A)(T+f (x , t ) )  + 1 

= : I + I I + l .  

The inequality follows from the minimality of An (x) as 

{(TJX)~-I: 0 <_ j <_ kn(x)  + 1 + An(Tk~(x)+lx)} = 1/Yn. 

TO estimate I ,  we begin by noting that  the map j F-+ (TJX)Io ~-1 is 1-1 for 

0 _< j < k~ - 1. To see this, note that  for such j ,  x -< TJx -< Tk"X in the reverse 

lexicographic order whence 

oo kn oo (pun -&~ - 1 ( X "~ oo X~n = (T X)£ n -~" ~ max I. un- l } , . . . ,Pmax(Xun-1) ,Xu ,~- l ,Xun)"  
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Thus  the difference between the TJx's must  be reflected in the first ~ coordinates.  

Since ~ < n + Lo, 

Sk~(1A)(x,t) =J{0 ~_ j _< k~ - 1: JJt+ (¢ f ) j (x ) l  [ <_ M}J 

=1{0 _< j _< ks - 1: llfn+Lo(TJx) - fn+Lo(X) -- tI] _< M )  

~J{~_ e ~/~n-I-Lo: Vy e [C_]]Jf~+no(Y) -- fn+Lo(X) -- tll <_ M + B}I.  

Since po, being the measure  of max ima l  entropy, is the Gibbs  measure  for the 

zero potential ,  there is some constant  K such tha t  for every _a E kVn, K-1)~ n < 

P0 [_a] _< KA '*. In part icular ,  cylinders of  the same length are of comparab le  sizes 

whence 

[Sk,(x)(1A)(x, t ) l  <_ gAn+n°po[][fn+Lo(') -- fn+Lo(X) -- tJ] _< M + B]. 

L e m m a  4.2 now implies tha t  I = o(Ann -d/2) uniformly on A. 

We now es t imate  I I .  Set ( x ' , t ' )  :-- ~-~s (x , t ) .  We have to es t imate  

SA.(~,)(1A)(X',  t'). We do this by showing tha t  

(8) h~(x ' )  < k~(x ') ,  

thus reducing the p rob lem to tha t  which was discussed in the previous step. 

There  exists n + L + 1 < u~n < Un(X') such tha t  Pmin(Xu" ) < Pmax(Xu'~), since 

otherwise, there would be an admissible word [ a l , . . . ,  at] for some r <_ s + 1 wi th  

a l  = a~ and Pmax(aj)  = Pmin(aj) ( 1  ~ j < r) .  This  contradicts  the aperiodici ty  

of A. 

Now consider 

X ! =(pUin(Xlu~n) , . . .  , Pmin(xu~n), (xl)U~n-1 , XUn), 

• - -  U l n  I I I U n  - -  1 O 0  y . - -  ( P ~ a x ( X % ) , . . . ,  Pmax(Xu' ), (x )u'~ , xu~), 

Tkn(x ' )x l  __ un - 1  
- -  ( P m a x  ( X u . ) , ' " , P m a x ( X u ~ - l ) , X Y ~ - l ) "  

! 
Since u n > n + L + 1, for every ~_ C )/Yn there is some Wo L-1 such tha t  x(~_) := 

' x '  x(E) vk~(x')+lx' (C, w L-l,  Yn+n) is admissible and since u n < u,,, -~ -< . This  

shows tha t  W,~ is spanned by (TJ(x!))~ -1 for j = 1 , . . . ,  k,~(x') - 1, whence (8). 

I 

This completes  the upper  es t imat ion,  and we now address the lower es t imat ion.  

LEMMA 4.4: There exists no such that  for all x, 30 _< il < i2 _< A~+~o(X) - 1 

such that  for every il  < j <_ i2, (TJx)~n+L iS the same, and 

{(TJX)~--I: il  <_ j <_ i2} = ~Yn. 
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Proof: Let L be large enough such tha t  A L > 0 and set no := L + n l  where 

[Wnl[ > 3. Choose three different a_j • W,~. There  are 0 < kl, k2, k3 <<_ A~+~o-1  

such tha t  z (j) := T~+L(TkJx) • [_aj]. In particular,  z (j) are different. Wi thout  

loss of generality, zO) -< z (2) -< z(3). For every e_ • Wn, construct  an admissible 

word of the form x(e_) = (e,w L- l , z (2) ) .  Let  x -  and x + be the minimal and 

maximal  points among the x(e__). Clearly, ~-k~x -~ x -  -< x + -< Tk~X, whence 

~0 < i l  < i2 < An+,~o(X) - 1 such tha t  x -  = ~-i~x and x + = ~'i~x. It  follows 
• - -  O 0  tha t  W~ is spanned by ~-Jx for j = z l , - - . , i 2 .  Since ( x ) ~ + L  = (X+)~+L = Z(2), 

(TJX)~+L is constant  for j = i l , . . . ,  i2. II 

LEMMA 4.5: There exists C2 > 0 such tha t  for n large enough, 

Proof 

fA  An SAn(x) (1A)(X, t)dm(x, t) >_ C2 nd/e. 

It is enough to prove tha t  for some C3 and all Iit[[ <_ B,  

f ~  An 
sAo (x) (x, t)dpo(x) >_ C3 nd/2 

(the lemma will then follow by integration dt over [[[t][ < U]). 

By Lemma 4.4 for some no, for every x • E and n • N there are 0 _< il  < 

i2 <_ An+,~o (x) - 1 such tha t  (~-JX)~+L is constant  for j = i 1 , . . . ,  i2 and such tha t  

W~ = {(TJx)~- l :  j = i l , . . .  ,i2}- It  follows that  

s,°+no(X) (IA)(x, t) 
i2 

>_ E ( 1 A O T ~ s ) ( x , t )  
j =i l  

= I{il < j _< i2: ] [ f n + L ( T j x )  --  fn+L(x) - -  t]] < M}] 

= [{(TJx)~+L-I: j • [il, i2], [[f~+n(T ix) -- fn+L(X) -- t[] < M}[ 

>_ I{e_ • Wn: 3y • [e_], [[fn(y) - f n ( x ) [ [  _< M - 4B}l 

> K-1A~po[IIF~(x, ")11 < M - 4B] 

where F:  E × E --+ R d is the symmetr iza t ion of f (as in the proof  of Corollary 2.7) 
n--1 given by F(x,  y) = f ( x )  - f (y ) ,  and Fn(x, y) := ~,=o F(  Tix, Tix) • Integrat ing 

with respect to dpo(x) we have, for all [It]] < B,  

/r Sh,+no(X)(1A)(x,t) > g - l A n ( p o  x po)[llF~]l _< M - 4B]. 
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As in the proof of Corollary 2.7, (E x E, T x T) is a subshift of finite type, 

F: E x E --+ R d is HSlder continuous, and F is aperiodic. Therefore, Fn satisfy 

a local limit theorem ([G-H]): 

(po × po)[[llF, dl _< M - 4BI] o( ~/n d/~, 

whence the lemma. | 

Proo f  of Theorem 4.1: We prove that  for M > 4B, A := E x {t: Iltll < M} 

satisfies that  

I[1ASNIA[]oo = O(I[1ASN1AIILI(Mo)) ( N  -+ oo). 

By the counting proposition, uniformly in x, An(x) × IWnl × A n, where A = 

e ht°p(E). Therefore, there exists c E 5t such that  for all x C Eo and n, A n-¢+1 _< 

An(x) < A n+c. Fix N > A 1+c and choose the n such that  A n < N < A n+l. The 

last estimations imply that  for every x E E0, 

An-c(x) < N < An+c(x) 

whence, by the preceding lemmas, for almost all (x, t) E A and N large enough, 

C1 AnWc 
SN(1A) (X , t )  ~ (n + c)d/2' 

A c2An-c 
SN(1A )dm  > (n -- c) d/2 " 

The theorem follows from this. II 
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