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§0. Introduction and general framework

Let (X, B) be a standard measurable space, and let 7: X — X be an invertible
measurable map. Let G be a locally compact, Abelian, Polish (LCAP) topological
group and let ¢: X — G be measurable.

The skew product transformation 74: X x G = X x G is defined by

73(2,y) := (72,4 + ¢(z)).

A measure m: B ® B(G) — [0,00] is called locally finite if m(X x K)
< ooV K C G compact.

Our program is to identify all 7y-invariant locally finite measures and study
their asymptotic behaviour.

It is known ([Fu], [Pa]) that if 7 is a uniquely ergodic homeomorphism of a
compact metric space (with invariant probability p), G is compact (with Haar
probability measure mg) and ¢: X — G is continuous, then ergodicity of 7, with
respect to the product p X mg is equivalent to the unique ergodicity of 7.

For non-compact G, it is well known that if 7 is uniquely ergodic (with invariant
probability p), and 74 is ergodic with respect to p x mg , then there is no 74-
invariant probability on X x G (see, e.g., [Al] chapter 8, or [Sc2]).

It is natural to ask (as in [Ve]) for 74-invariant locally finite measures. There is
a natural class of 7y-invariant locally finite measures: the Maharam measures
which we proceed to describe.

Let (X, B) and 7 be as above and let h: X — R, be measurable. We call a
probability p € P(X, B) (h, 7)-conformal if po 71 ~ p and dpor/du = h p-a.e.

Now let ¢: X —+ G be measurable, and let : G — R be a continuous
homomorphism. Let g = p, be a (e®°%, 7)-conformal probability on (X, B).
The associated Maharam measure is mq: B ® B(G) — [0,00] defined by
dmeg(z,y) = e *Wdu(z)dy (where dy denotes Haar measure on G). The reason
for this terminology is that Maharam measures were first considered for G = R
in [Mah].

A Maharam measure is easily seen to be 74-invariant, the dilation from the
first coordinate being canceled by the translation in the second.

For the transformations 7,4 considered in this paper, we show the following
properties:

UNIQUE CONFORMAL PROBABILITIES: For each continuous homomorphism
a: G — R, there is a unique (e*°%, 7)-conformal probability p = pq on (X, B);

MAHARAM MEASURES ARE ERGODIC: For each continuous homomorphism
a: G — R, the Maharam measure m,, is ergodic (for 74);
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ERGODIC MEASURES ARE MAHARAM: The only ergodic 74-invariant locally
finite measures are those proportional to Maharam measures.

Remarks:

(1) For G compact, the only continuous homomorphism a: G = R is a = 0,
the only Maharam measures are of form m x mg, and the above properties for
T, are equivalent to its unique ergodicity.

(2) As shown in [Sc2], there are abundances of (e*°%,7)-conformal infinite
measures, and of non-locally finite, 74-invariant, o-finite measures.

We attempt our program in two cases. In §1, we treat the so-called cylinder
flow Ryy: T x R — T x R defined by Rax(z,y) := (z + o,y + x(z)) where
o € T~ Q and where

x(@)=(B+1)-1g 2 ,—F (some S >0),
the rest of the paper being devoted to certain group extensions of adic transfor-
mations by symmetric cocycles (see below).

Let S be a finite, ordered set, let A: S xS — {0,1} be an irreducible, aperiodic
matrix and let ¥ = ¥4 C SN be the corresponding (topologically mixing) subshift
of finite type (SFT).

Let V be the adding machine on SY. The adic transformation on ¥ is the
induced transformation of V' on ¥ defined (in §2) for all except countably many
points & € ¥ by 7(z) = Vmin{n2l V(2)€X} (4,

For f: ¥ — G, we consider the symmetric cocycle ¢5: ¥ — G defined
by ¢s(z) == Yo (f(T'z) — f(T*(7z))) where T: & — X is the shift, the sum
terminating as T%(z) = T%(rx) V large ¢ > 1.

In §2 we show that the class of 74 -invariant, locally finite measures for f ape-
riodic having finite memory is the collection of measures which are proportional
to mixtures of the canonical Maharam measures (Theorems 2.1 and 2.2).

In §3 and §4, we consider the asymptotic properties of 74, with respect to
Maharam measures, where f: ¥ — R¢ is an aperiodic Holder continuous function.

For & € R?, consider the Maharam measure mq: B(X x R?) — [0, co] defined
by dma(z,y) = e *Ydu(x)dy where pu = p, is the (e*7, 7)-conformal measure.
In §4, we show that 74, is boundedly rationally ergodic with return sequence
a(n) < n/(logn)*? (see [A2], and/or §4) with respect to mo. Bounded rational
ergodicity is a strong form of rational ergodicity, and so this entails a kind of
absolutely normalized ergodic theorem:

Slh)

a(n) /dem" Ve Limo)
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where f, ~ f if V. mg 1 0o 3 ng = my, 1 0o such that V p; = ng; 1 0o, we have
+ E;Vﬂ fp; = f ae as N — oo (see [Al]).

For a # 0, 74, is squashable with respect to m, (see [Al]) and there is no
such kind of ergodic theorem. Nevertheless, we show in §3 that the logarithmic
ergodic theorem holds:

n—1 k
logd p_g Fo Tos . hy, (T)

} 1
log oo (T) mg-a.e. as n — 0o VF € L (my) 4

where p, is the equilibrium measure of a - f (see [Bo)).

There is some relation between the results of §2 and results in [P-S] remarked
at the end of §2. The program in §3 and §4 has been previously carried out in
full in [A-W] for & = {0,1}V, f(x) = z;. Bounded rational ergodicity of certain
of the cylinder flows was established in [A-K].

Horocycle flows on Abelian covers of compact, hyperbolic surfaces can be con-
sidered as “smooth analogues” of the skew products considered here. Ergodic,
Maharam measures for these horocycle flows were introduced, and their asymp-
totics considered in [B-L)].

We conclude this introduction with a Basic Lemma, to be used in §1 and §2.

For a € G, define Q,: X xG — X X G by Q,(z,y) = (z,y + a), then
Ty © Qa = Qq 0 T¢. If m is an ergodic 74-invariant locally finite measure, then so
is moQ, (a €G) whence, as is well known, either mo @, L mor moQ, =cm
for some c€ R, .

For m an ergodic 74-invariant locally finite measure, set
H=H, :={acG moQ,~m}.

0.1 Basic LEMMA:
(i) H is closed;
(i) If H = G, then m is proportional to a Maharam measure.

Proof: (i) By unicity of absolutely continuous invariant measures, 3 a multi-
plicative homomorphism A : H — R, such that

/ foQadm::A(a)/ fdm VYacH, fecL(m).
XxG XxG

For f: X x G — R continuous with compact support, we have that fo Q,, —
foQ, uniformly as a, — a in G. Suppose that a,, € H, a,, & a ¢ H. This forces
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Afay,) — 0, since by the local finiteness assumption, Ve > 03 f: X x G — Ry
continuous with compact support such that

/ fdm:l,/ foQudm < ¢
X xG XxG

whence

€> / foQudm «+ foQ,,dm = Aa,).
XxG

XxG
On the other hand 3 f: X x G — R continuous, everywhere positive, and ab-
solutely integrable. Clearly fo @, > 0 and [ xxg f © Qadm > 0, contradicting
A(an) = 0 and showing that a € H.

(ii) There is a measurable (hence continuous) homomorphism a: G — R such
that moQ@, = e~*@m. Define the measure 7: B(X xG) — [0, o] by di(z, y) :=
e*Wdm(z,y). It follows that Mo Q, = ™. For A € B(X), B € B(G) and a € G,
we have

m(A x (B+a)) =moQy(A x B) =m(A4 x B).

Since the Haar measure on G is unique up to a constant, V 4 € B(X), 3 u(4)
€ R, such that

m(A x B) = u(A)ymg(B) (B € B(G)).

It follows that p is a finite measure on X, and that
dm(z,y) = e~ *Wdu(z)dy.

The 74-invariance of m now implies that po 7 ~ p with duo 7/du = e*°? (it
being necessary to cancel the dilation due to translation of the second coordinate
by dilation of the first). |

§1. Cylinder flows

Let T := R/Z = [0, 1) denote the additive circle (the multiplicative circle being
St :=e?™T C C) and let Ry(x) := 2+ a mod1. The natural distance function
on T is given by the norm ||z|] := min,ez |z + n|.

For 8 > 0, let Gg C R be the closed subgroup generated by 1 and 8. Note
that Gg = Z if B € Q and Gg = R if 3 ¢ Q. Consider, for 8 > 0, the function
X : T — Gg defined by

— B .— _ — _
X=X = 1[073{_1) ,31[3%71) =B+ 1)1[0,%) B
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and the skew products (or cylinder flows) R, ) : T x Gg = T x Gg defined by
R, o (,y) = (z+q, y+ x8)(x)) fora ¢ Q, B> 0.

The goal here is to identify all the locally finite, o-finite, Ra’xw)-invariant
measures. Write x{) := Y722 x(8) o R

We recall some information about the continued fraction expansion

1

Q= —
nt o

of a € [0,1) ~Q. This can be found in [Kh|.
The positive integers a,, are called the partial quotients of a.
Define py,, ¢, € Zy4, ged(pp,an) =1 by

Pn _ 1

qn ay + —— 71—

ezt —Fi7a,

then

do = 17 g1 =041, Q41 = Gn+1qn + gn-1;
po=0, pr =1, Pny1 = Gny1Pr + Pn-1;

-1 n+1

p < p2n+1 and &1_ _ Pn+1 _ ( ) )

<«
qon q2n+1 qn dn+1 Indn+1

The rationals p, /g, are called the convergents of «, and the numbers ¢,, are
called (principal) denominators of a.

Recall the Denjoy-Koksma inequality, that ||Fy, |l < Vg F for any function
F: T — R of bounded variation (\/;F < oo) such that [ F(t)dt = 0. In
particular, |an)| <2(B+1).

1.1 PROPOSITION: Va ¢ Q, 8> 0 and n > 0, 3 a unique (nX(B),Ra)—conformaI
probability measure pt = pq gy € P(T).

Proposition 1.1 follows from a more general “folklore theorem” (pointed out
to the authors by J-P. Conze and K. Schmidt):

THEOREM: Let @ ¢ Q and suppose that h: T — R has bounded variation and
f; h(z)dz = 0. There exists a unique (e", Ry)-conformal y € P(T). Moreover, p
is non-atomic.

Proof: We first prove existence.
Let I be the (countable) set of discontinuities of A and let I := |J,cz RAl-
As shown in [Ke]:
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3 X a compact metric space, T: X — X a homeomorphism, m: X — [0,1)
continuous and finite to one, H: X — R continuous such that

(i)moT =Raom, (i) VI ¢, v~ {2z} =1and, H(r"1z) = h(z).

It follows from the Denjoy-Koksma inequality that
(iii) |Hy, (z)] < Vph ¥V £ € X N 77T, and hence (by continuity) V z € X.

By theorem 4.1 in [Sc2], 3 p € P(X) and ¢ € R such that poT ~ p and
dpoT/du = ef’+e. Since

1= ,u(T""X) — / eHan +C‘Ind#' = eCdn
X

as n — 0o, we must have ¢ = (.

We claim that p is nonatomic. Otherwise 3 z € X with u({z}) > 0 whence
v e P(X), v < pwithv =37 . andra, where a, > 0. By dpoT/dy =
, ap = cef @) for some ¢ > 0 entailing v(X) > ¢Y nez €M@ = oo and
contradicting v € P(X).

Now define v € P(T) by v = pon~L. It follows that v is nonatomic, whence
v(F) =0and vo R, ~ v and dvo R, /dv = e" v-ae..

Existence and nonatomicity are now established and we turn to the proof of

eH

unicity.

We prove that if vo Ry ~ v and dvo R,/dv = e v-a.e., then R, is v-
ergodic. This suffices since nonunicity implies existence of p with po R, ~ p and
dpo Ry /dp = €* p-a.e., and R, not p-ergodic.

As above, v is non-atomic, and by minimality of R, »(J) > 0 V intervals J.
Thus if 7: [0,1) — [0,1) is defined by #(z) := v((0,z)) then 7 is an orientation
preserving homeomorphism of T, and v o 7! = Lebesgue measure. It follows
that S = mo R, o n~! is absolutely continuous with S’ = "™ and by theorem
2b in [dM-vS] S is ergodic with respect to the Lebesgue measure. It follows that
R, is ergodic (v). |

Remark: The (X, R,)-conformal pi = Ea,gn € P(T) can also be obtained
using the methods of [Her] (as in [N1] and [N2]):
Define the continuous f = f, 3: R -— R by

_[n-z z€[0,a(n,p))
Faple) = { nf(z —a(n,B)) +a(n,B) =z €la(n,h),1)

where a(n, 8) = (7 — 1)/(nP*! — 1) (this value of a is forced by the slopes, and
continuity of f, g).
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By the theory of rotation numbers, 3 0 < b < 1, and an orientation preserving
homeomorphism £: T — T with £(0) = 0, £(1) = 1 such that £ 1o f, 0 = R,
where f, := fp 3+ .

It can be shown that if g :=mo £, then duo R, /dy = nX.

INVARIANT MEASURES FOR THE CYLINDER FLOW R,y Recall that ¢ € Nis
called a Legendre denominator for o if 3 p € N such that |a — p/q| < 1/2¢%.
This is because of Legendre’s theorem that a Legendre denominator for « is a
principal denominator for .

1.2 SuBLEMMA: Suppose that ¢ is an odd Legendre denominator for o, then
(1)| =1

IXq
Proof: in case |a — p/q| < 1/24>.

Firstly {kp/q mod1: 0 <k <qg—-1} = {0=0a; < a2 < -+ < a4 < 1} with
a; := kip/q; and

{kp/g+1/2 mod1: 0<k<g-1} = {0=by <by < --- < by <1}

satisfy a1 < b1 <ap <by < - <@y <by<1withd, —a; =a;41 —b; =1/2¢.
Now let k;,4; (0 < ¢ < ¢ — 1) be such that a; = k;p/q mod1l and b; =
¢;p/q mod 1. Set @; := k;a mod1 and b; = £, mod 1.
We claim that @; < by <@ < by < -++ < a4 < Eq < 1. The reason for this is
that |ka — kp/q| < 1/2¢ (0 < k < ¢ — 1) whence in case o > p/q,

_ 1 - 1
a;<a;<a;+—=0b; <b; <b+— =ajq41 < ‘-,
2q 2q
and in case o < p/q,
_ 1 - 1
ai+1>ai+1>ai+1—2—q=bi>bi>bi~2—q-=ai>~--
Now Xgl) is a step function with points of discontinuity 1 — @, > 1 — b; >
1—@y>1-by>...> 1-a, > 1—5(120, and jumps of +2 at 1 -a; (1 <i<q)
and -2 at 1 —@; (1 < i < q). The values of Xfll) are of the form {v,v + 2}

for some v € Z. The only v € Z permitted by the condition [, Xél)(t)dt =0is
v = —1. Thus |X<(11)| =1 |

This subsection is based on the following lemma, which is obtained from sub-
lemma 1.2 and the well known fact that there are infinitely many odd Legendre
denominators for any a ¢ Q:
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1.3 LemMA: 3 g — oo such that [x4r | =1V k > 1.

Remark: Sublemma 1.2 can be strengthened: |X<(11) [ = 1 whenever ¢ is an odd
principal denominator for . This is shown in [N1].

For n > 0, a € T~ Q define the Rawx(l)-invariant, Maharam measure mq 5 on
B(T x Z) by
Mo,y (A X {n}) == 17" pa,1,7(4).
1.4 THEOREM: (1) Voo ¢ Q and n > 0, (T x Z,B(T x Z), My, By 1)) is a
conservative, ergodic measure preserving transformation.
(2) If m is a locally finite measure on TxZ such that (TxZ, B(TxZ), m, R, )
is ergodic and measure preserving, then 3 7, ¢ > 0 such that m = cmg 4.

Proof: The ergodicity of (T x Z, B(T X Z), Mq,5, Ry 1) Was established in [N1]
(see [C-K] and also [A-K] for the Lebesgue case n = 1) and is standard using
[Sc1] and Lemma 1.3:

3 ng - 0o (odd Legendre denominators) such that (x(l)[ =1 and

fa1n (R ADA) >0 YV A€ B(T).

We prove (2). Let m be an R, ,)-ergodic locally finite measure on T x Z. We
claim that m = ¢mq , for some ¢, > 0. By the Basic Lemma and Proposition
1.1, it suffices to prove that H :={n€Z:mo @, ~m} =1Z

Suppose that H # Z, and write my(A4) :== m(Ax{k}). Then T :=m_;+m,; L
mp. 3 U C T open, such that mp(U) = 1 and m(U) < 1/5, whence 3 I C T, an
open interval such that m(I) < mg(I)/5.

Given 0 < p < 1 and an open interval L = (¢ — r,a + r), denote by L, the
subinterval (@ — pr,a + pr). Note that if € L, and |y| < (1 — p)|L[/2 then
z+y€ L.

30 < p < 1 such that mo(I ) > mg(I)/2. By Lemma 1.3, 3 k£ > 1 such that
llgn,all < (1 —p)|I]/2 and |ank| =1

It follows that

B0, (I x {0) € I x {~1,1
whence
mo(1)/2 < mo(Ip) = m(I, x {0})

=m(R" ) (I, x {0})) < m(I x {~1,1})

=m(I) <mg(I)/5.
The contradiction shows the impossibility of H # R, and thus proves (2). 1
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INVARIANT MEASURES FOR THE CYLINDER FLOW R, , . For 7,8>0, ac¢
T~ Q define the locally finite measure m, g, on B(T x R) by

dma g€, y) = n"Ydpa g n(c)dy.

Evidently mq,g 0 Ry y(8) = Ma,p.n-
Fix @« € T~ Q. For t € R, consider the set

L(t) = Lo(t) := {a € [0,1): 3 ng = 00, gn,t mod1l — a}

(where {g,: n > 1} are the denominators of ).

Theorem 4.1 in [Ku-Ni] implies that L(t) = [0,1) for Lebesgue-a.e. t € R.
Moreover, it is shown in [Kr-Li] that for a ¢ Q with bounded partial quotients
and t € R, L(t) is finite iff t € Q + Q.

1.5 LEMMA: Ifa € L(B/8 + 1) is positive and g, 0/(8 + 1) modl — a, then
Y z € T, all limit points of{x(ﬂ) (x)}x>1 are contained in

q"k
{(B+1)(N—a): N=-1,0,1,2}.
Proof: Let € > 0, N € Z and suppose that ‘qnﬁ% — N —a| < ¢ then ¢,8 =
(B4 1){N + a £ ¢), whence

X = (B+ 1)1, 2 e, — 0B = (B+ (L -ate)

where L := (l[O,ﬁf))qn - NeZ.

Recalling that |X¢(1§)l <2(B+1)weseethat -24+a—-€e<L<2+4a+e It
follows that for a € (0,1) and sufficiently small ¢ > 0: L =—1,0,1,2. |

1.6 THEOREM: Suppose that o ¢ Q, f > 0 are such that L(ﬁ—ff) is infinite;
then:

(1) For each n > 0, (T xR, B(T x R),mq g5, Ry &) is a conservative, ergodic
measure preserving transformation.

(2) If m is a locally finite measure on T x R such that

(T x R,B(T x R),m, Ry, &)
is ergodic and measure preserving, then 3 n,c¢ > 0 such that m = cmq g 4.

Proof: The ergodicity of (T x R, B(T x R), mq g4, Ry y») was established in
[N2] and in [St] for n = 1 (Lebesgue measure).
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We prove (2). Let m be an R,, , (s-ergodic locally finite measure on T xR. We
claim that m = c¢mq g, for some ¢, > 0. By the Basic Lemma and Proposition
1.1, it suffices to prove that H := {e € R mo Qs ~m} =R

Suppose otherwise; then H # R and 3 ¢ > 0 such that H = ¢Z. It follows that
Jae L(z2) with (B+1)(N—a)¢ HY N = —-1,0,1,2.

a+1
(Else L(B—ii) c[o, 1]ﬂUN=,1’0’1’2(N+ ﬁ—i—lH), whence since H = ¢Z, L(E%)

is finite in contradiction to our assumptions).

Fix such an a and set F := {(8+1)(N —a): N = -1,0,1,2}; then E C R~ H.
Set m = ZjeEm 0@;; then . L m and 3 K C T x R compact such that
m(K) >0, m(K)=0. 3U C TxR open and precompact, such that K C U and
m(U) < m(K)/5n where n is the Besicovitch covering constant for R? (n < 16,
see [W-Z}).

For each 2 = (z,y) € K 3 an open rectangle R(z) with diameter less than
smin{|j—j'|: 5,4’ € E, j # j'} such that 2 € R(z) C U. Fafiniteset I' C K such
that K C V :={J,cr R(2) and ), 1g(y) < n. Evidently m(V) < m(K)/5n.

We claim that (at least) one of the rectangles R = R(z) (z € T') has the
property that m(R) < m(R)/5, else

V) > =S mRE) > o Y om(R(:) > m(K).
z€l zel

It follows from the restriction on the diameter of R that {Q;R: j € E} is a
disjoint collection, whence, if S := Uje g @;R, then

m(S) = m(R) < m(R)/5.

Write R = I x J where I C (0,1) and J C R are open intervals. Given
0 < p <1 and an open interval L = (a — r,a + r), denote by L, the subinterval
(a — pr,a+pr). Note that if z € L, and |y| < (1 —p)|L|/2 then z + y € L.

30 < p < 1 such that m(I, x Jp) > m(R)/2. By Lemma 1.5, 3 k¥ > 1 and
A C I, such that

lancall < (1 =p)HI/2, m(Ax Jp) >m(R)/3

and
in Iv® () — 5 -
mjell{;1|ank(x) jl<@Q=-p)J|/2 VzeA

It follows that
R s (Ax J)CS
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whence

m(R)/3 < m(A x Jp) = m(R™ 4, (A x Jp)) > m(S) < m(R)/5.

ax(®

The contradiction shows the impossibility of H # R. |

§2. Locally finite invariant measures for tail relations of skew products

Set S :={0,...,s— 1} where s > 2, let A := (A;j)sxs be a matrix of zeroes and
ones such that Vj3i s.t. A;; =1 and Vi3j s.t. A;; = 1. Set

L=%4:={z=(21,20,...) €SN : Vi Agizin, =1}
We topologize ¥ by cousidering the base of cylinder sets, sets of the form
le1,..,en]={r€X: sy =6 V1<k<n}

where €1,...,6, € 5.

Let T: ¥ — X be the left shift, T(z1,xs,...) = (z2,23,...). The topological
dynamical system (X,T) is called a subshift of finite type. Henceforth we
assume that it is topologically mixing. This is equivalent to the existence of
some M € N such that all the entries of the matrix AM are positive (see, e.g.,
(Bo)).

An admissible word (of length n) is an element (e;,...,€,) € S™ (or word)
e =1V 1< 7 <n—1 Note that a cylinder [e),...,€,] is
nonempty iff its corresponding word (e;,...,€,) is admissible. We denote the

satisfying A;

collection of admissible words of length n, or paths of length »n — 1 (the number
of steps), by W, and set W := | J, Wh.
Consider T’s tail relation

T=%T) :={(z,y) € £2:3In >0, Tz = T"y}.
Consider the reverse lexicographic order on T(T')-equivalence classes:
x <y iff 3ng s.t. Tpy < Yn, and z, =y, for any n > ng.

It is easy to see that for any fixed £ < y there are finitely many z such
that £ < 2z < y, so the type of ordering in each equivalence class is either Z,
or ZF, or Z~. Let ¥y, £_o be the set of maximal and minimal elements of
(X, <), respectively. To characterize these elements, introduce functions Ppax,
Ppin: S — S

Prax(a) =max{i € S: A;, =1} and Pppn(a)=minfi:€ §:4;,=1}.



Vol. 128, 2002 INVARIANT MEASURES AND ASYMPTOTICS 105

Note that
T € Boo = Tp—1 = Poax(zn) for all n.

It follows that there are at most s maximal points (similarly, at most s minimal
points) and all of them are periodic.

The adic transformation 7: ¥ ~%, — £~ X¥_ assigns to each z the
smallest y strictly greater than x. Specifically, given z € ¥~ X, 3 £ > 1 such
that

T; = Pmax(zj41) V1 < j <£—1and z¢ < Prax(Tet1),

and we set 7(x) := (y1,¥2, ...) where the yi’s are defined reverse-inductively:

Ty k Z e+ 1,
yp =4 min{i € §: i>xy, Aig,,, =1}, k={,
Poin(yrt1), 1<k<{£-1

It is convenient to restrict 7 to Lo := X\ {J;50 TIY oo ™ Ui<o 7180

Remarks: (1) It is possible to visualize ¥ as the space of infinite paths in the
directed graph T with vertex set S x N and edges connecting (b,n) to (¢,n + 1)
iff Ay =1

(2) If @ = SN is the full shift, and V is the adding machine, then 7 is the
induced transformation Vs, in the sense that 7(z) = VF®) () (z € £¢) where
F(z) := min{n > 1: V*(z) € 3p}.

(3) Adic transformations were introduced in [V1] (see also [V2] and [V3]) in
the more general setting of non-stationary Markov chains.

Let G be a locally compact, Abelian, Polish topological group. For f: ¥ —
G, consider the skew product transformation Tj: £ x G — X x G defined by

Now T’s tail relation is

T(Ty) := {((z, ), (&, ¥) € (Ex G)*: T n >0, T{ (z,y) = T (', y)}
={((z,y), (#",¢) € (£ x G)*: (z,2) € UT), y' —y = vy(z,2")}
where the symmetric (or tail) cocycle 9;: T — G is defined by

s(z,2') =Y (f(T*0) — f(T*2")).

k=0

Consider 14 5 Yo X G = g x G defined by

Téy ('T’y) = (T:L',y + ¢f(:L')),
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where ¢¢(z) = 1;(x, 7). It is easy to see that the orbits of 74 ; are exactly the
equivalence classes of T(T¥) N (To x G)2.

In this section we identify the 74 -invariant locally finite measures for certain
f: £ — G which we now proceed to describe. For f: ¥ — S' and k > 1, let

vk(f) ::sup{lf(:c) _f(y)l 1T,y € Ea Zj =Yy V1 S] < k}
The collection of Si-valued Holder continuous functions on ¥ is
Her:={f:Z>8%30<0<1, v,(f) = 0(0") as n — o0}

and the collection of Sl-valued functions on ¥ with summable variations is

o0

Fori={f: £ = 8% Y we(f) < o0}

k=1

The collection of G-valued Holder continuous functions on ¥ is
He ={f =G ¥y e@,yof € Hgil,

and the collection of G-valued function on ¥ with summable variations is
Fo:={f: 2> G:VyeG,vyofe Faul

Finally, a function f: ¥ — G is said to have finite memory if 3 N > 1 such
that f(z) = f(z1,...,zN).

These notions coincide with the usual notions of Hélder continuity, summable
variations, and finite memory of R-valued functions in the case G = R. Clearly,
every f: ¥ — R which is Holder (respectively with sumnmable variations, finite
memory) in the usual sense is also Holder (respectively with summable variations,
finite memory) according to the definition above. To see the other direction, note
that if f € Fgr then f is continuous, because v o f is continuous for every «y € R.
Therefore || f||loo < 00. Now consider the character y(z) = e27®/10lfll to see
that v, (f) < vp(yo f). It follows that if f is Holder continuous (respectively
with summable variations, finite memory) in the above sense, then it is Holder
(respectively with summable variations, finite memory) in the ordinary sense.

Clearly, if a: G — R is a continuous homomorphism, then a o Hg C Hg and
ao Fg C Fp.

A measurable function f: ¥ — G is called periodic if 3 v € @, z € St and
g: ¥ — S! measurable, not constant, such that yo f = zggoT. It is known that
in the case f € Hg, g is necessarily in Hg:. The function f is called aperiodic
if it is not periodic.
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2.1 THEOREM: Suppose that X4 is topologically mixing, and that f € Hg is
aperiodic. For every continuous homomorphism a: G — R:

(1) there is a unique (e~*(#s), 7)-conformal probability p, € P(Zo);

(2) pto is non-atomic;

(3) 74, is ergodic with respect to the Maharam measure on %o X G defined by
dme(z,y) = e~ *Wdu,(z)dy.

Theorem 2.1 is essentially known (although we indicate the proof). Our main
result in this section is

2.2 THEOREM: Suppose that f: ¥ — G is aperiodic and has finite memory.
Ifm is an ergodic, 74 -invariant locally finite measure on ¥o xG, then m = cmy,
for some ¢ > 0 and some continuous homomorphism a: G = R.

The collection of all locally finite, 74-invariant measures on £ X G is identified
by Theorems 2.1 and 2.2 as the collection of mixtures of Maharam measures.
This is because by the ergodic decomposition (see, e.g., [A1]), any locally finite,
T4-invariant measure is a mixture of ergodic ones.

Conditions for aperiodicity based on [Kow| were given in §3 of [A-D1]. We’ll
say that a topologically mixing subshift of finite type (£,T) is almost onto if
Vabe S 3n>1, a=spa1,...,8, = b € S such that T[sg] N T[sp41] #
O (0<EkE<n-1).

2.3 PROPOSITION: Suppose that % is mixing and almost onto, and that ¢: £ — G
satisfies ¢p{x) = ¢(x¢); then either ¢ is aperiodic, or 3 vy € G, X € S! such that
vy o ¢ = X In particular, if Group(¢(X) — #(X)) = G, then ¢ is aperiodic.

Some of the proofs use the theory of non-singular equivalence relations and we
provide some background.

Let (X, B) be the standard Borel space. An equivalence relation R C X x X
is called standard, if R is a Borel subset of X x X, that is R is in the product
o-field B x B. For any 2z € X, R(z) := {y : (z,y) € R} is the equivalence
class of z, and for a subset A C X, R(A) = U{R(z) : z € A)} is called the
saturation of A. The standard equivalence relation R is called countable if
R(z) is countable for any z.

For a countable, standard relation R, A € B => R(A) € B. If G is a count-
able group of automorphisms of X then Rg = {(z,9(x)): z € X, g € G} is
a countable, standard equivalence relation, and conversely, any countable stan-
dard relation R is generated in this way by a countable group of automorphisms
(see theorem 1 in [F-M]). A o-finite measure p is called non-singular for R
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if u(R(A)) = 0 whenever u(A) = 0; it is called ergodic if, in addition, either
u(R(A)) =0 or u(X N~ R(A)) =0 for every A € B.

By a holonomy we mean a Borel automorphism ¢: A = ¢(A) (some A € B)
whose graph I'(¢) := {(z,¢(z)) : = € A} is a subset of R. A o-finite measure
which is non-singular with respect to R is called invariant for R if p(A) = u(¢pA)
for any holonomy ¢. By corollary 1 in [FM], p is invariant under R iff p is
invariant for the action of any G with Rg = R.

The following proposition appears in [P-S] (see also [B-M]). We use the notation
a = M=} for the double inequality M ~1a < b < Mb.

2.4 PROPOSITION: Suppose that ¥ 4 is topologically mixing, and f € Fg. There
is a unique (e~%f, T)-conformal probability u € P(Xo), and there exists M > 1
such that

() p([zy,. .., z,]) = MEle ~Pnt3 70 H(T* ) Yzel, n>1

where P = max{hp(T) + [, fdp:p € P(Z), poT~! = p}.

The property (¢) is known as the Gibbs property. A T-invariant probability
with the Gibbs property is known as a Gibbs measure.

As is shown in [Bo] and [R1]:
e 3 a unique probability uy € P(X) such that duyoT/du; = e~ f for some
A>0;
e T is exact (whence 7 is ergodic) with respect to uy;
e 3 a T-invariant probability ps ~ py such that || log(dps)/(dps)|lee < 005

and
e 3 M > 1 such that

pr((@rse. o zal), pp((, ., 2a)) = MEL PHEISITD yoew, n>1

where P is the topological pressure of f given by the variational principle

P := max{h,(T /fdp pEP(T), poT™ =p} = hy (T /fdpf

The probability py is known as the equilibrium measure of f (being the unique
maximizing T-invariant probability) and is a Gibbs measure.

Proof of Proposition 2.4: For every admissible word ¢ = (¢1,...,¢p) and z €
such that A, ;, = 1 let (c,z) denote the concatenation (ci,...,cn;21,22,...)-
The proof relies on the characterization of (e =%, 7)-conformal measures as those
measures p for which

dp o k/dy = e Vs (@:2),(5:2))
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whenever a = [a1,...,a,], b = [b1,...,b,] are nonempty with a,, = by, and
k: a — b is defined by k(a,z) := (b,z). To check this characterization, suppose
z € Yo and set y = 7(z). By the definition of the Adic Transformation, there

exists some ng such that for every z € [z1,...,Zn, ],
T(Z) = (yl? e Ungsy Zng+1y Zng+2s - - )
Equivalently, T|[whm’z"0] = Kk where k: a — b is defined as before with a =
(T1,-. s Zny) and b = (y1,...,Yn,). For z = (a,w), the conformality condition
now reads
dpor

(a w) — e_¢f(a»w) — e“"/’f((avw)»'r(avw)) — e_'l/}f((a'aw)v(bvw))'
du
FEristence

We claim that pg is (e%7, 7)-conformal. To establish this, suppose that a,b
and « are as in the above. We show that

dpyg o K,(a’ ) = e~ Vs ((@2).(b:2)
dpy
For v,: Tla,] — a defined by v,(z) := (a, ) we have that v;' =T" : a = Ta,)
whence

n -1 n—1
g otey) o (BT 00)) " < ymeTim e,
dpg dys

and, since kK = vy o v; !,

d n
ELO 0,0) = L (17 (0,0) P ,0)
f f f
dps o vp dpgoT™
= b,z a, T
L) M 0,)

— o~ Vs((a2),(5:2)

Uniqueness
Suppose that v € P(Zy) is (e~%/, 7)-conformal. It follows that if

a=lay,...,a,) and b= [by,...,b,]

are both nonempty with a, = b,, and &: a — b is defined by s(a,z) := (b, z)

then
dvok

dv

(a, .’L‘) = e—’l/)f((a,:l:),(b,x))’
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whence 3 M > 1, K,(s) >0 (n > 1, s € S) such that
v([z1,.. ., x0]) = MilKn(xn)eE:;; 1T > 1,z € S

But
n—1 k
e2or=0 fT72) = pMELPRp ((1y, ... 2,])

and so
v([z1,...,25]) = Mian(zn)eP"’pf([xl, ey Tn))

It follows that
v(T™"[s]) = Mian(s)eP"pf([s])

whence Y, oo Kn(s) < e7F", v([z1,...,2,]) < M'ps([z1, ..., zn]), and v < py.
Writing F := dv/duys, we see from dvor/dv = dufor/dpuys that For =
F mod piy, whence by ergodicity F' =1 and v = py. ]

Proof of Theorem 2.1: Let o: G — R be a continuous homomorphism. By
Proposition 2.4 and its proof, there is a unique (e~*(#f), 7)-conformal probabil-
ity po € P(Xp), and this measure is equivalent to the (invariant) equilibrium
probability measure p,(¢,)-

It is shown in [G] (see also [A-D2]) that if f € g is aperiodic then Tf is
exact with respect to m = p x mg where p is some equilibrium measure on .. In
particular, T’ is exact with respect to mq ~ pa(g,) X Mg, whence 74, is ergodic
with respect to m,. |

Now let f: ¥ — G be measurable. If 3 a globally supported, o-finite T-
nonsingular measure m on ¥ x G such that (¥ x G, B(X x G),m,Ty) is exact,
then f is aperiodic.

To see this, suppose otherwise, that 3 v € G, z € S! and ¢: & — S! Hélder
continuous, not constant, such that vy o f = 2gg o T. Consider G € L*(X x G)
defined by G(z,y) := g{z)}y(y); then G is not m-a.e. constant and G o Ty = 2G.
Thus Ty is not weakly mixing and hence not exact (in particular, G is T; ™ B-
measurable V n > 0).

2.5 PROPOSITION: Let f € Fg. Any 74 -invariant, ergodic locally finite measure
m on ¥ x G with H,, = G is proportional to a Maharam measure, and the
existence of such implies that f is aperiodic.

Proof: Let m be a 74 -invariant, ergodic locally finite measure on ¥ x G with
H,, = G. By the Basic Lemma, m has the form dm(z,y) = e*¥)du(x)dy where
a: G — R is a continuous homomorphism and p is (e*°#7, 7)-conformal, whence
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(e%=°f, 7)-conformal. Proposition 2.4 shows that the (unique) conformal measure
has the Gibbs property (o), and is therefore globally supported on X. Tt follows
that m is globally supported and so, as shown above, f is aperiodic. i

By possibly changing the state space, we may assume that f(r) = g(z1,z2)
in the assumptions of Theorem 2.2. The proof of Theorem 2.2 uses Lemma 2.6
below.

For u: ¥ — S and £ > 1, set uy(z) := Hﬁ;}, u(T?z).

2.6 LEMMA: Assume u: & — S?! is Holder continuous, then either:

(1) 3 2 € S, g: & — S?! Hélder continuous, such that u = zgg o T;
or

(2)3e>0, £y > 1such thatV £ > by, z € ¥, 3 y € T satisfying

zi=y1, Ty =T and |u(y) — u(z)| > e

Proof: Let L: C(X) — C(X) be the operator (Lf)(z) = )} p,_, f(y). Ruelle’s
Perron-Frobenius theorem implies that 3X > 0, a Borel probability measure v
and a positive continuous function h such that L*v = Av, Lh = Ah, [ hdv = 1.
Moreover, v and h are uniquely determined up to a multiplicative constant, and
VfeC(X), A""L"f — h [ fdv uniformly on %.. Let P be the operator

h
= AL —=f).
Pf=2 ( hoT f)
It is not difficult to check that P1 = 1 and that if ¢: ¥ — S! is continuous and
Pp=1,thenp=1.
Let P, be the perturbed operator P, f := P(uf). One checks that for every n,

h
hoTm

P2 = P"(unf) = AL (s un ).
In [G-H] it is shown that either 3z € S! and 3g: & — S! Hélder continuous such
that P,(g) = zg, or ||P} fllcc — 0 for every f € C(%).

We show that if (2) fails, then ||P? fll 7+ 0 for some f € C(X). This proves
the lemma, because it implies that 3z € S! and 3¢g: ¥ — S! Holder continuous
such that P,(g) = 29, and P,(g9) = zg implies that P(Z;%T“) = 1, whence
u = zgigz‘ hdv is known to be ergodic and globally supported (see, e.g., [R2]).
Therefore |g| = 1 and (1) follows.

If (2) fails, Ve > 0 there are z(¥) € £, 1 < 4 1 0o such that if

yek, k>1, xgk) =y, and T%z® = Tty
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then
g, (2®) — ug, ()] < e.

By possibly passing to a subsequence, we can ensure that 3a € SVk > 1, :v(lk) =a.

Set "
Yo i= min{% 1T,y € E}.

Since ¥ is compact, o > 0 and

1PE g lloo = (P 1) (T4 (R))]

e D ST I S

£
YD, Tthy=Ttk gk h(T ky)
> oA > (1 = |ug, (9) = e, () )11 (w)
ye%, Tihy=Tlkgk)
> vo(1 - e)/\_l"Ll’“I[a](x(k))

Since A=™(L"1[4))(x) tends uniformly to h(z)v[a], we have that
lim inf || Py lalloo 2 70(1 — €) min h(z) > 0

as required. |

If u: Wy (2) — S, u(z) = u(x1,22) and a € W, is a path a = (a1,...,an4+1)
of length n, then w, is constant on a. We denote

n

un{a) = uple = Hu(ai,aiJrl).
i=1
In Lemma 2.6, when u(z) = u(x1, z2), (2) has the combinatorial form:
(2"} 3 4o such that V £ > £, paths @ = (a1,...,9041) € Wy, Japath b =
(b1,...,bey1) € Wy such that a3 = by, apgr1 = bey1 and up(a) # ue(b).

Proof of Theorem 2.2: By the Basic Lemma and Proposition 2.4, it suffices to
show that H,,, = G.

Suppose otherwise that H # G; then 3y € @, v # 1 such that v|g = 1.

Since m is 7y -invariant, it is also ¥(Ty)-invariant and if k2 A — k(A)
(A € B(2 x G) is a T(Ty)-holonomy, then m(x(A)) = m(A).

Using aperiodicity and Lemma 2.6, we fix £ > 1 so large that V paths a =
(a1,...,ae41) € Py, Japath b =b, = (b1,...,be41) € P such that a; = by,
ags1 = bes1 and 7 0 fo(a) # 7 0 fo(b), equivalently fo(a) — fe(b) ¢ H.
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Set J := {fe(a) — fo(by) : a € Pg}; then J C G~ H and J is finite. Set
m:i=) c;moQ;; thenm L mand 3 K C £ x G compact such that m(K) > 0,
m(K) =0.

Set M = |W,|. Approximating K by larger precompact open sets, we see that
JU C ¥ x G open, U compact such that K C U and m(U) < m(K)/2M.

For each z = (z,y) € K 3 a set W(z) = C(z) x V(2) of form cylinder x open
such that z € W(z) C U. By compactness of K 3 z1,..., 2y such that K C V :=
U;’::l W (zr). We claim that V is a disjoint union of sets of form cylinder x open.
To see this, let L be the maximum length of the cylinders C(z),...,C(zn); then
V= Uf:l:l W(z) = Uszl Uecewr, ccota € X V(zx) — a disjoint union. Thus
K cVand m(V) <m(V)/2M.

It follows that 3 a set C x W of form cylinder x open such that m(C x W) > 0
and (C x W) < m(C x W)/2M, otherwise V would not have these properties.

Since C x W = U,ew,(C,a) x W, 3 a € W, such that m((C,a) x W) >
m(C x W)/M.

Next, 3 b = (by,...,bg41) € Wy such that a; = by, age1 = bpyq and
fola) = fo(b) € J.

Define 7: (C,a) x W — C x G by 7((C, a,z),y) .= ((C,b, ),y + fe(b) — fela)).
Evidently 7 is a ¥(Tf)-holonomy and so by assumption, m(r((C,a) x W)) =
m{(C,a) x W) > m(C x W)/M.

On the other hand, 7((C,a) x W)) C Qy,()-f,(a)C x W whence

m(C x W
—(—M—l <m(r(C,a) x W) < m(Qy,)-f1(a)C X W)
_ m(C x W)
< W _r
<m(C x W) < i
and £ > 1. This contradiction establishes Theorem 2.2. ]

Remark: The proof of theorem 2.2 establishes the (stronger) statement:
Suppose that f: ¥ — G is aperiodic and has finite memory.
If m is an ergodic, ¥(Ty)-invariant locally finite measure on £ x G, then m =
cmy, for some continuous homomorphism «: G — R and some ¢ > 0.

We conclude this section with an application of Theorem 2.2 to the “Markov—
Pascal-adic” transformations considered in [P-S].

Let ¥ = ¥ 4 be a mixing subshift of finite type and let f: ¥ — G. We use the
notation

.’L“Z = (IL‘i,.’L‘i+1, .. .,.’L‘j), :L‘fo = (.’l?,',.'L‘i+1, .. ) (.Z' S 2)
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Recall from [P-S}, the equivalence relations: S} C 4 x £4 defined by

Si={(z,y)€BaxTa: In>1, z0 =y,

(y1,-.-,Yn) & permutation of (z1,...,z,)};

and §% C £,4 x T4 defined by
Shi={@y) eTaxTa: In21, a2 =4, fol@) = fa(v)}.

Evidently S} = SE* where F# : £ — 75 is defined by F#(zy,Ts,...); 1= i 4,
(z€ 8).
Suppose that G is discrete. Evidently if f: £ — G then

(z,y) €8] <= ((z,0),(y,0)) € T(Ty)

whence
(z,y) € S"Z N2 <= 3IneZ (y,0)= 74, (2,0)

and S;’; N X% is generated by the induced transformation (7, +)Zox{0}-

We claim (as in [P-S]) that if f has finite memory and a: G — R is a homo-
morphism, then p, is Sﬁ-invariant, ergodic.

To see this, recall from Theorem 2.1 that m, is 74, -invariant, ergodic;
whence mals x(0} 18 (74,)x,x(o}-invariant, ergodic; whence our claim (since

Mo (A X {0}) = pa(A)).

2.7 COROLLARY: Suppose that f: ¥ — Z% (d > 1) is aperiodic and has finite
memory.

IfrePX)isS i-invariant and ergodic, then v = p, for some homomorphism
a:Z¢ 5 R

Proof: We'll deduce this from Theorem 2.2. To do this, we show first that
v(ENXg) =0.

We claim that all S};-equivalence classes are infinite (this implies that v is
non-atomic, whence v(X ™ 3y) = 0 as this set is countable).

To see this we’ll need the symmetrization F of f defined on the mixing SFT
Yx X by F(z,y) = f(z)— f(y) (F: £x X — Z%). Evidently F has finite memory.

We claim that F is aperiodic. If not, then

e2mia(f(z)~ ) = zM (-’an € Z)
9(z,y)
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for some g € Z, g # 0, 2 €S}, g: £ x ¥ — S and then

N N
2ria(fn (@)~ Fn () = ZN9<_T_$»_T_!/_> VN>1, z,yc .
g(z,y)

Choosing N > 1 and periodic points y = TNy, = TNty  we have, for all
T € X,

2miafn(Ta) _ 2miafn(y) ,N g(TN 1z, y)
9(Tz,y)

N+1 1]
e2miafn+1(x) :ez"riQfN+l(yl)zN+1 g(T z,Y )7
9(z,9)

whence (!) G(T2)
G(z)

627riqf(z) =7

contradicting the aperiodicity of f.

Let u be the measure of maximal entropy on ¥ and let P: L1 (uxp) — L1(pux p)
be the transfer operator. By the local limit theorem of [G-H), 3 ¢ > 0 such that
Y cylinders a, b C %,

nd/2P"(1(axb)n[Fn:0])(1:, y) — cp{a)p(b) uniformly on ¥ x ¥ as n — oo.
Now fix £ € ¥ and N > 1; then 3 ny such that
c
n42 P™(1 (g x mniFa=o) (T2, T"7) > ZallaDu((b) ¥ a, beWn, n 2 ny
whence
Hy € X: (z,y) €SI} > Hy € X: T™Vy = T™Vx, Foy(z,y) = 0}
> [Wn| — oo
as N — oo and establishing our claim.
As mentioned above, v(X ™ Xy) = 0 and the probability 7 on Xy x {0} defined

by U(A x {0}) = v(A) is (74,)nx{o}-invariant and ergodic. Define the measure
m on g x Z% by
@—1
m(A) = Zlergfd'V“.

Zo k=0
The measure m is evidently locally finite. By Kac’s formula, it is 74, -invariant,
and by Kakutani’s tower theorem it is 74 -ergodic (see, e.g., [Al]). Thus, by
Theorem 2.2, m = m, for some homomorphism a: Z¢ — R. It follows that
V= Ha- ]
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2.8 COROLLARY: Suppose ¥ is a mixing, almest onto SFT.
Ifv e P(X)is SZ—invariant and ergodic, then v = i, for some homomorphism
a:Z% > R

Proof: As mentioned above, S} = SE* where F#: & — Z5 is defined by
F#(x); := 8; 4, (i € S). Since evidently Group(F#(X) — F#(X)) = Z5, F# is
aperiodic by Proposition 2.3. The result follows from Corollary 2.7. 1

Remark: Theorems 2.9 and 2.11 in [P-S} both follow from Corollary 2.8. In
both cases, S = {0,1}, d = 1 and ¥ is almost onto.

§3. A logarithmic ergodic theorem

Asin §2, let S = {0,1,...,5 — 1} where s € N, let A: § x § — {0,1} be an
irreducible and aperiodic matrix and let ¥ = Ej C SN be the corresponding
(topologically mixing) subshift of finite type. Recall that T: ¥ — X is the left
shift, 7: ¥9 — Xy is the induced adding machine, where X, is obtained from X
as in §2.

In this section, we consider the asymptotic properties of 74, where f: ¥ —
R? is an aperiodic Holder continuous function, with respect to Maharam mea-
sures. It will be convenient to use the supremum norm on R?, ||(z1,...,zq)| =
maxj<k<d |z |-

Fix some o € R? and consider the Maharam measure m,: B(Z x R?) — [0, oo]
defined by dmg(z,y) = e *Ydu(x)dy where pp = p, is the (e*f,7)-conformal
measure,

As mentioned above, the aperiodicity of f implies that T’ is exact with respect
to mg. It follows that 74, is ergodic with respect to m, (generating the the tail
relation for T¢) and also conservative (being invertible, ergodic and preserving a
non-atomic measure).

We prove the

LOGARITHMIC ERGODIC THEOREM:

(i) log Z‘I’:;é F °© Tgf — hpa (T)
logn heop(T)

Me-a.6. 881 — 00

VF € L(m,)+ where p, is the equilibrium measure of o+ f.

It will sometimes be convenient to denote

(7o) =
Sn(F) = S5, ** (F)IZZFOT:Zf.
k=0
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The proof of the logarithmic ergodic theorem is based on the following two
reductions:

Firstly, it is sufficient to establish (1) for a single Fy € L!(m4 ) since then, by
the ratio ergodic theorem,

Sn(F) [x Fdm
Sn(Fo) - [x Fodm a6

whence log S, (F) ~ log S, (Fp) a.e.
Secondly, in order to establish (1) for Fy € L'(mg)+, it is sufficient to find:
e sets A, B € B(X x RY) with mg(A), ma(B) > 0 and
e (random) subsequences My: A — N, k: B — N such that My, Np 1 oo,
log My, ~ log Mg41, log Ni, ~ log N1 as k& — o0;

satisfying
- . log Su, (Fo) _ hypo (T)
lim su k < Pa on A,
) CP T log My eop(T)
and
69 lim inf log S, (Fo) > pa (T) on B.

k—oco lOg Ny, - htop(T)

To see this, note that V n large 3 k = k, > 1 such that My < n < Mg,

whence
log Sn(FO) < log SMk+1 (FO)

logn — log M,
and it follows from log My ~ log My, that
. IOgSn(Fo) . 10gSM (F())
1 — =1 —= ks
lrlbiszp logn lf_ljip log M,
Similarly
1
lim inf 08500 _ i ¢ 108 S (Fo).
nooo  logn koo log N
The functions
. log Sy (Fi e F
lim sup _Og_n(_o_) and liminf —Oﬂ—ol
0O logn n—00 logn

are T4, -invariant, whence so are the sets

A= [limsup log Sn(Fo) _ h”"(T)], B:= [

< Jim inf 128 5n(F0) h”a(T)].
00 logn heop(T)

nooo  logn T hep(T)
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By ergodicity, both sets (containing sets of positive measure by (1) and (1) are
of full measure and (1) is established for Fy.

In the Main Lemma (below), we’ll establish (1) and (1) for Fo = 15xp,, (o) and
A = B =X x B(0) (for some M, M’ > 0 where By (0) := {y € R? : ||y|| < M})
using the local limit theorem of [G-H] and large deviations techniques.

The subsequences My, N are related to some counting functions, which we
proceed to define.

We define the counting functions A,,: ¥4 — N by

An(z) :=min{N > 1: {(t*2): 0 <k < N -1} =W, }

where W, denotes the collection of admissible words of length n (as in §2).
The reader may easily verify that in case X is a full shift, A, = s" = |W,|
and consequently k — (7%z)7 defines a bijection {0,1,...,s" —1} W, Vz €
3. In other words, 7 generates T-equivalence classes efficiently. For a mixing
topological Markov shift, as shown by the counting proposition below, the
situation is analogous.

3.1 COUNTING PROPOSITION: Suppose that ¥4 is a mixing topological Markov
shift, and that L > 1 is such that all entries of AL are positive; then for x € Xq:

Wh! < Ap{z) < 3\WhiLl

Proof: The left hand inequality follows directly from the definition of A, (x). To
see the right side, assume by way of contradiction that A,(z) > 3|{W,4r|; then
there is a word @ € W,y and 0 < k; < k2 < k3 < An(z) — 1 such that 7%iz € [q)
for k = 1,2,3. Set 78z = (a,20)); then 2V < 22 < 2®), For every ¢ € W,
choose some point of the form z(g) = (¢, wg™?, 2?) where wf~! is some word
which makes z(g) admissible. Clearly, 71z < z(¢) < 7*z. Thus W), is spanned
by 77z for 0 < j < k3 in contradiction to the minimality of A,(x). The right
hand inequality is thus proved. |

Set A := exphyop(X) and assume without loss of generality that L > 2, where
L is as in Proposition 3.1. For every z € ¥y and n large enough set

Un(z) ;== min{u > n+ L: 41 < Pyax(z4)}, U, :=u, — L,

lo(z) ;= max{l < n+ L: 2g-1 < Pmax(ze)}, €, :=4n— L,
where Pp,x is as in §2. By possibly adding a vector of constants to f, we may

assume that [ fdp, = (0,...,0) (note that neither ¢; nor p, change when a
constant is added to f).
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Set
on=Mn+L)~ £y, 0on:=u,—(n+L).

3.2 LemMA: 3 M, € Ry such that

g
lim sup ——, limsup
n—oo 1 n—oco l0EN

< M() a.e.

Proof:  We prove this only for oy, the proof for p,, being essentially the same.
Set P := Pyop (a - f). Recall that 3, consists of at most s points, all of which are
periodic. Set oo = {1, z®, ... 2(M} and let p be the least common multiple
of the periods of £(*); then 7 < s and, for every z € Y, TPz = z. Define by
induction PXtl = P, o P¥. . By the definition of o, if ¢,,(z) > b then

T2 € [Pax(@ntorL)s - - s Pmax(Entb4 L) Tnpbir]-

For b > s the word (P2, (Tnib4L),-- s Poai(Znibsr)) is made of a repeating
period, hence is the prefix of a max1ma1 point. Applying this argument to b, :=
| Mo log n], using the invariance of p, and the structure of o, we have

o [0n > byl Zpa [wo . f”z(:)_s] .

Since p, is a Gibbs measure and since for every i, TPz(® = g9,
Pa |28, 7)) = 0 (2 Fon (#)=00P) = 0 (e () -00P)
whence
. fzu
(1) Palon > Mglogn] =0 (Z Mo (= P)>
i=1
It follows from the unicity of the equilibrium measure that a - fp (z(i)) /p < P.
Thus, the exponents in (1) are all negative and for My large enough,

oo
Zpa lon > Mplogn] < co

n=1

The result follows. [ ]

The next lemma is the main lemma, being the version of () and (})) that we
prove. Let

B:= 2L||f||+zvk(a b))

where vg(a - f) = sup{|e - ¢(z) — a- oY) = k t= yg_l}'
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3.3 MAIN LEMMA: There exists M > 2B for which

) 1
(2) limsup —log SAu;‘_l(lgng(O)) < hp (T) mg-a.e. on: ¥ x By2(0),

n—oo N

e |
(3) liminf —log SAt'"—l(IEXBM(O)) > hp, (T) mg-a.e. on: £ x Bp2(0).

n—oo N

The rest of this section is devoted to the proof of the main lemma. Set

Un (z,M):={e € Wn: Yy € [e] |[fn(y) — fn (@) < M},
Vn (z, M) := {y €Xg:Vz € [yév_l] Il fw () — fnv (@) < M}

- U e

EeUn(va)

3.4 LEMMA: For each M > 2B, 3My, Ms > 0 such that for all (z,t) € £o x
Bi/2(0) and n large enough,

Al;l_l
U, (&, M2)] < > LsxBu(0) (T,;f (x,t))

Jj=0

and
Ay —1

n

> s (7, @1) < U, (o, M),
7=0

Proof: Fix some z € £ and t € R%. We estimate

An—-1
AN = Z 1E><BM(O) (Tj{f (IL', t)) for N = u;l,g,ln
=0
It follows from the minimality of A, that Y0 < j < Ay — 1, TN*L (17g) =
TN+L (), because all the entries of AL are positive, so V& € W, there exists

¢ € Wr_1 such that (g, ¢, Pmax(zn+1), 2%, 1) is admissible and strictly larger
than z. Thus 3°3_8 ¢ (75z) = w1 (8) — fn4L (T72), whence

Av=t{0<j <An —1:|fnsr (Fz) — fnyn (2) — t|| < M}

Since for j < Ay, (T72)%,p = 2R¥4r, the map j = () TF 1 is 1-1, so

An = |Bn| where

N+L-1
0

By = {(zj) : ||fN+L (ijﬂ) — fayL (@) _tH SM;0<35< AN}'
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We now prove the required inequalities. Setting N = u,, in the above inequality
we have V(z,t) € %o X Bag/2(0)

Au, (P25 fuy (90) = Fu (2) — ] < M5 05 < Ay )
<le € Wa, ¥ € [l fun () — fun (@) < SM + B

and the upper inequality follows with M; := B + 3M/2.
Using the same argument for N = ¢, one shows that for all (z,t) € £y x
Big/2(0) and n large enough so that £;, is well defined,

Ap >

i
n

\{ (zj)f)"_l :Vy € [(zj)f,"_l} ||f€'n(y) - fﬁ’n (:c)“ < %4" -B0<j< Af’n}\'
0

Since {(’rjw)l"_l 0< <Ay — 1} = We,

Ap >

{§ € Wy, : Vy € [g]llfe, (y) — fe, ()] < —]\2{ - BH

and this is the lower inequality for My := M/2 — B. |

The following lemma provides, together with Lemma 3.4, the upper estimation
(2) in the Main Lemma.

3.5 LEMMA: VM > 0 [imy, 002 log [Up (z, M)| < hy,, (T) mqa-a.e.

Proof: Since p, is the Gibbs measure for « - f, there exists some constant K
such that for all y € [ef '],

K- lexn@=nPl) < p (e8] < Keofa@-nPlaf)

By the definition of Uy, for every )~ € U, (z, M) and y € [sg*l] ,

Po [e171] = @ T =nP(@ ) o arfa@)-nPla-f)

whence

Pe (Va (z, M))

e fa(x)—nP(a-f)"

Thus, U, (z, M)| = O (e"P(@H)=oful®)) " Recall that according to our assump-
tions, [a- fdpy = 0, s0 P(a- f) = hy, (T). The lemma follows since by the
ergodicity of py, for almost all z € g, « - f, (z) = 0 (n). |

[Un (=, M)] <

We now turn to the lower estimation (3) in the Main Lemma.
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For every N € N and § > 0 set
En (0) == {y €Yo :Pa [yév_l] > e~ (hra (T)"‘s)} .
By the definition of Un(z, M}, VM > 0,z € £y and N > 0,
@) |Un (, M) 2 &V Cre =9 [p (Viy (2, M) - pa (En (8))]-
We prove that
1
Jim ~logpa (En (6) <O pa-ace,
1
lim —logpa (Va (z,M)) =0 po-a.e.
n—oc

Since for almost all z € Zg, £, (x) ~ n, (3) will follow from this, (4) and Lemma
3.4.

3.6 LEMMA: limp,o0 2 log pa (En (8)) < 0 pa-a.e.

Proof: p, is a Gibbs measure, so 3K such that Yn V y
po [107Y] < KeTn®=nP1)

whence
F.(0) C {y € B: K nPlef) 5 gré-nhon (D),

Since po (@~ f) =0, P(a- f) = hy, (T'). Thus, for n large enough
E,0)C{yeZ:a- fu(y) >né/2}.

We will prove that

— 1
nll,r&;lIng" {lyeT:a- foly) >nd/2} <0
using large deviations theory for the p,-distributions of « - f,.
Using the Holder continuity of f and the Gibbs property of p,, it is not difficult
to prove that the following limit exists for ¢ € R (see [Bo)):
1
lim ~logE,, (%) =P(a-f+qa-f)-P(a-f)=:c(q)

n—oo 7

where P(-) denotes topological pressure and E,, denotes expectation with respect

10 Po-
By standard large deviations theory (see, e.g., theorem I11.6.1 of [El}):

1
i —1 o 0 Jn 2nd/2} < — inf T
hﬁsolipn ogpa{y €L fu(y) 2 né/2} < p38/2 ()
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where I(p) is the Legendre—Fenchel transform of ¢(g) defined by
I(p):=sup{pg—c(q)}.
q

We outline the (standard) proof that inf,s/2 I(p) > 0.
By theorem 5.26 in [R1], ¢ (q) is C? in R (see also [G-H]). By aperiodicity, a- f
is not cohomologous to a constant and therefore (see [G-H])

¢ (q) =pg(a-f) and c"(q)>0

where p, is the equilibrium measure of (1+¢)a - f. It follows that I(p) =
qop — ¢(qo) where gq is the maximum point for ¢ — gp — c(¢) satisfying
0=p—c () =p—Pg (" f)
whence
I(p) = qopg (- f}) = P{(1 + qo) o~ f]+ P(a- f).

By the variational principle,

P[(1+go) o f] = hpy (T) +pgo (@~ f + qocx - f).

Thus,
I(p)=P(a-f) = (hp, (T) +pg (- f)) >0

for p # 0, because then pg, # po (since pg, (- f) = (o) = p # 0 = pa(a - f)).
Since I is finite and convex (being the the Legendre—Fenchel transform of the
convex function c), it is continuous, whence inf,>;,/2 I (p) > 0. [ |

3.7 LEMMA: There exists Mz > 0 such that ¥4 > 0, for pp-a.e. t € Lo, 3Ny € N
such that Yn > Ny 3 n' < dn, € € W, satisfying

e () = fu () < M3 Vy € [g].

Proof:  Fix some &' > 0 (to be determined later). By the Ergodic Theorem,
for pe-almost all z € &, ||f (z) ]| = o(n), so there exists Ny = N; (z,d’) such
that Yn > Ny, | fn (€)[| < 6n. Since f is aperiodic and pq (f) =0, {f o T*},- |
satisfy a local limit theorem with respect to p, (see [G-H]). Thus, 3ky € N and
¢ > 0 such that ¥V (wy,...,wq) € {+1, —1}%, k > ko,

P Vi 3B < wi(fi)i < 4B] > c/kY/?
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where (fx); denotes the i-th coordinate of that vector. In particular, for every
w = (w1,...,wq) € {+1,-1}% there exists u(w) € Wy, such that

(5) Vz € [u(w)] Vi 2B < w;fi, (2); < 5B.
It follows that for every ¢ € Wy, such that u(w)c € W and Vz € [u(w)c] and Vi
B < w,-fk0+L (Z)z < 6B.

We use u(w) to construct €. Fix some n > Ny and 1 < i < d. We begin by
constructing words €' € Wy such that |¢!| < §'n and such that for N = [¢*[ and
all z € [gf]

(6) lfN(Z)]l < 7B fOI‘j :,é 1,
(7) [fn(2); = ful®);] < 7B forj =i,
We construct by induction sign vectors w* = (wk,...,wk) and words ¢F € W,
such that for all k, v* := (u(w?),c!, w(w?),...,c* 1, u(w*)) is admissible and such

that (6) holds for all z € [v¥] with N Ny, == [v¥|. Choose w! = (wi,...,w}) by
w} = sgnfn(z);. Assume v* has been chosen and choose some z € [u*]. Define

w* as follows: if |fn, (2)i — fn(z)i| < 7B, stop and set € := v*; else set for j =
wf“ = sgn(fn(z); — fne (2 ) )}, and for j # i, w’”’l := —sgn fn, (2);. Now set

vF*l = (vF, AL u(wFt)) where cFt! € Wi is some word which makes v*+t!
admissible. Since at each step we get nearer to f,(z); in steps bounded from
below by B, this procedure will stop after less than ||f,(z)||/B < é'n/B steps,
so |€'] < &'n(ko + L)/B. Tt can be easily verified that £ satisfies (6) and (7) for
N = |¢}|. Now consider

£= (§17§17827 o 7Qd—1’5d)

where ¢/ € Wy make the above word admissible. The length of ¢ is less than
Ld + d(6'n(ko + L)/B) so, by choosing ¢’ small enough and n large enough (i.e.,
Ny large enough), we can make this length smaller than én as required. Also, it
follows from the construction of g* that for all z € [g],

I fie1(2) — fn(z))| < 8Bd.

The lemma, is thus proved for M3 := 8Bd. |

3.8 LEMMA: d ¢ > 0, Ny € N such that Vn > Ny

pa{yeX:Vze [y3'] Ifa(2)l <2B} > c/n?,
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Proof: The probability in question is bounded from below by py [|| f»]] < B,
and this in turn is bounded below by the local limit theorem. |

3.9 LEMMA: There exists My > 2B such that for almost all z € ¥

1
li_mn_}oo—ﬁ logpa (Vi (2, M4)) =0 pg-ace

Proof: Fix some arbitrary é > 0. Fix
Ny > max{Nl, (Nz + L)/(l - 5), (Ng + L)/(l — (S)}

where N; and Nj are given by Lemma 3.7 and Lemma 3.8; and N3 is large enough
to ensure that e~ < ¢/n%2 for n > Na.

Assume n > Ny. For almost all z € ¥g and all £ € R J¢ = £ (z) € Wy such
that n’ < dn and

Vzelel |fn(2) = fn (@)]] < M3,

Pa ({y :Vz € [yg_(L+n’)~1] ”fn—(L+n') (z) ” < 2B}> > e»&(n—(L+n'))
> e ",
Set L
W= {y vz e [yg—( ) ] Mam@any (D)1 < 2B},

Consider the set
V.= {[é; sy "y ew and ce WL} :

One checks that V] C V,, (z, M4) where My = M3 + 3B. We estimate the
measure of V.. Since p, is a Gibbs measure, there exist a constant K; > 1 such
that [a],[8],[a,b] # @ = pala,b] > K] 'pa[a] pa [b] and there is a constant Ko
such that Va € Wy pa [a] > K5 . Set

W' = {[yg—("’+L)—1] 1y € W} ;

then

pa (Va) > K7 1K; ™) > pald > KT'K, (~+1)

laJew’

pa (W).

Thus, pe (Va) > K7 K5 “K;%"e~%". Since the above is true for all n such that
n > N4,

1
lim —log V,, (z, My) > =0 (1 +log K3) .

n—oo Tl
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Since § > 0 is arbitrary, the lemma is proved. 1

As mentioned above, Lemma 3.6, Lemma 3.9 imply via (4) that IM > 2B
such that 1
liminf — log |Un(z, M)| > hy, (T) a.e.,

n—o0 1
whence (using Lemma 3.4) we have (3). This proves the Main Lemma, and the
logarithmic ergodic theorem. ]

§4. Bounded rational ergodicity

Recall from [A2] that a conservative, ergodic, measure preserving transformation
(X,B,m,T) is called boundedly rationally ergodic if there is a set A € B,
0 < m(A) < oo such that IM > 0 such that for all n > 1,

n-1 n—1

> 10Tk SM/ (ZleTk)dm.
k=0 ) A \g=0

The rate of growth of the sequence

n—1
1 / k
ap = —— E 1a0T"dm
m(A)? J4 k=0

does not depend on the set A € B, 0 < m(A) < oo satisfying (x). This sequence
is known as the return sequence of T and denoted a,(T) (see [A1]). In this

(%)

Lo(A

section we prove the following theorem:

THEOREM 4.1: Let ¥ be a topologically mixing subshift of finite type, let u be
the (1, 7)-conformal measure and let f € Ha be aperiodic; then 74, is boundedly
rationally ergodic with respect to mg = p X mpa and
n
an(Tg;) X ——(logn)d/T

To prove Theorem 4.1, we show that for A = X x By (0), M large,

30 < ¢ < C < oo such that
cn

C
(ogmyr® = /Asn(lf*)dmo’ IS0y < o

As before, these estimations are first carried out along counting function
sequences using the local limit theorem. We begin with the upper estimation.
Let pg be the measure of maximal entropy on X. It is known that dpy = hodp
where hg is bounded away from zero and infinity. Since ¢ is invariant under
addition of constants to f, we can and do assume that E, (f) = (0,...,0).
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LEMMA 4.2: VM > 0,3 A(M) > 0 such that
polllfa(") = bl < M] < A(M)n~¥* VbeR?, neN,
Proof: Set F := [||y]| < M] C R? and fix some a = a(M) € (0,1) such that

Lo, v4) < H(S‘““y’) —4()

a
i1 Yi

where ¥ is the Fourier transform of
d

v(t) = 2(2a2)d/21[||t||§2a](t) H (1 - |2t—;|)-

=1
It follows that
pol|l fn — bl < M] F(fn = b))

(fn = b))

/ P, (e )y (1) dt
[Nt <2a]

Ep, (1
Ep, (¥
1
ey
1

. (2m)?/2 /[Htlt<2a] [Boo (7 7) [ 7(2)dt =: An(M).

Note that the last term, A,,(M) does not depend on b.
As shown in [G-H], there exist € > 0 and X: [|| - || < €] — C such that A(¢t) =
1 — ct? + o(|[t|{?) as t — 0; and that for some 0 < § < 1,

Zitfay _ J A+ O(0M), It <,
Epy (e /") = {0(9”), ¢l € [e, 2a).

Making ¢ smaller if necessary, we assume that for all ||t]] < &,
[A(t)| <1- 2ct2 <e
Using the above to estimate A,,(M), we have that for some K > 0,

An(M)O</ |Ep, (€7 9)| v(t)d
(¢l <2a)
<2 / IA()["y(t)dt + (4a)*K O™
[t <el

)

A(

2 / T T d
< ~—=)| 7l —=]d7 + (4a)*KO"
n? firi<evm | VI <\/ﬁ) (

2 / 2 T d
<—7 e~ 7 y(—= }dT + (4a)°K 6"
n? Jiiri<evm (\/ﬁ)

_2(0) / e dr
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The lemma follows from this. |

Set B := L||flloo + Y. x>0 vx(f) where L, as usual, is some number such that
all the entries of AL are positive. Fix some M > 4B, set

A= 5o x [[lt] < M)
and o(z,t) :=14.
LEMMA 4.3: There is some Cy > 0 such that for almost all (z,1),

Aﬂ
|San(@)(14)(2,1)] < G175
Proof: Let s be the number of states of X, set Lo := L + s + 2, and define
up(z) :==inf{u > n+ Lo: £y—1 < Prax(zy)},
en(z‘) = Sup{e <n+Lygzeg < Pmax(xl)}'

For pg-almost all x € ¥ these are finite. For such z we have the following
representation:

x= (e, Pt (g, 1),.. o> Prax(Tup—1); Tup—1,To )-
Define k,(z) € N by the equation
%2 @) (z) = (P~ Y(zy, 1), -- <y Pmax(Tup 1)) Tup~1, T )-
If b > z,, 1 is the minimal state such that bx,,, is admissible, then
rEn @4 () = (P22 (D), . .., Prain(), b, 220).
We estimate Sy, 14 by breaking it into two members:
Stn(e)(14) (@) = Sk (@)(1a) (@, ) + Sh (@)= () (14) (7057 O (2,1))
< Sk z)(1a)(z,t) + SAn(,k,,(Wm)(lA)(TS; (z)+1(x, t))+1
=1+II+1
The inequality follows from the minimality of A, (x) as

)P 0< § < ko(z) 4+ 1+ A (7R @) = W,
0

To estimate I, we begin by noting that the map j — (Tj:n)g"—] is 1-1 for
0 < j <k, — 1. To see this, note that for such j, £ < 79z < 7%=z in the reverse
lexicographic order whence

.’L'?: = (Tknl‘)?: = (P::l;;l"—l(.z‘u"_l), ey Pmax(xun—l)a l‘un_l,.’l,‘z’i).
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Thus the difference between the 772’s must be reflected in the first £, coordinates.
Since £, < n+ Ly,

Sk, (La)(@,t) =H{0 < j < kn — 1t It + (65);(z)]| < MY
={0 <j S kn = L [ fatro (72) = friro(2) — £ < M}
<H{e € Wasro: Yy € [Ell fatLo(¥) — frsro (@) — ¢l < M + B}.

Since pg, being the measure of maximal entropy, is the Gibbs measure for the
zero potential, there is some constant K such that for every a € W,, K71\" <
pola)] < KA”. In particular, cylinders of the same length are of comparable sizes
whence

Sk () (1a) (@, 1)} < KA TE0po[|| fryro () = frtro(x) — tl < M + B].

Lemma 4.2 now implies that I = O(A\*n~%?2) uniformly on A.
We now estimate II. Set (z/,t') := Ts;‘(z)H(x,t). We have to estimate
S, (2)(La)(z’, ). We do this by showing that

(8) An(xl) < kn(xl),

thus reducing the problem to that which was discussed in the previous step.
There exists n + L+ 1 < u,, < uy(z’) such that Ppin(Tu;) < Pmax(2u ), since
otherwise, there would be an admissible word [ay, ..., a,] for some r < s+1 with
a1 = a, and Ppax(aj) = Pmin(a;) (1 < j < 7). This contradicts the aperiodicity
of A.
Now consider

zl :( mm( 'u’ )? . mm(xu') ("I" )un—l 1;“;)7
Yy ::(ngx(xu’n)?“ '7PmaX(x;§l)7 (xl)zzhlvxz),
Tha (@) g :(P;Z;l(wun)w--,Pmaxwun—l)vx;ﬁ—l)-

Since u/, > n+ L + 1, for every € € W, there is some wl ! such that z(¢) :=
(e, wh™ ',y 1) is admissible and since u}, < up, ' < z(g) < T*» @=)+1z/ This
shows that W, is spanned by (77(z'))g~ v for j=1,...,k,(z') — 1, whence (8).
1

This completes the upper estimation, and we now address the lower estimation.

LEMMA 4.4: There exists ng such that for all z, 30 < ¢) < iy < Appny(z) —1
such that for every i; < j < ig, (Tja:)?f+ 1, is the same, and

{(Px)3 iy <G <ix} =W,
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Proof: Let L be large enough such that AX > 0 and set ng := L + n; where
[Wh,| > 3. Choose three different a; € Wy, . There are 0 < ki, k2, k3 < Apyng—1
such that zU) := T"*+L(rhiz) € [g;]. In particular, 209) are different. Without
loss of generality, z() < 2(2) < z(3) For every € € W, construct an admissible
word of the form z(e) = (e, wt™!,2®). Let 2~ and z* be the minimal and
maximal points among the z(g). Clearly, ™'z < z= < z¥ < 7%z, whence

30 < iy < iy < Apyno(®) — 1 such that 2= = 7%z and 2+ = 7%2z. It follows
that W, is spanned by 79z for j = iy,...,i5. Since (z7)2,; = (z1)2,, = 2,
(t72)%, [, is constant for j = i1,..., 2. l

LEMMA 4.5: There exists Co > 0 such that for n large enough,

)\n
/ASAn(z)(lA)(m,t)dm(x, > Ca .

Proof: It is enough to prove that for some C3 and all ||¢t|| < B,

Xn.
/E San (@) (@) (z, t)dpo(z) > CsW

(the lemma will then follow by integration dt over [||t]] < B]).

By Lemma 4.4 for some ng, for every z € ¥ and n € N there are 0 < 4; <
i2 < Anno () — 1 such that (r7z)%, ; is constant for j = 4y, ..., 12 and such that
W, = {(#2)27 L j =41,...,42}. It follows that

Shning(z)(La)(2,1)

= |{i1 < j <ot | farn(772) = fusr (@) =t < MY
= [{(rIz)g " € [inyias 1 fasn(772) = fain(z) — 8] < M}
> |{e € Wa: Jy € [e], Ifn(y) — fulz)| < M — 4B}
> K7\ pof[| Fu(, )|} < M — 4B]
where F: £ x ¥ — R? is the symmetrization of f (as in the proof of Corollary 2.7)

given by F(z,y) = f(z) — f(y), and Fy( =30 1F(T’a: T'z). Integrating
with respect to dpg(z) we have, for all “tll < B,

LSAn+no(m)(1A)($’ t) > K=" (po x po)|l|Full < M — 4B).
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As in the proof of Corollary 2.7, (X x X, T x T) is a subshift of finite type,
F: % x ¥ — R? is Holder continuous, and F is aperiodic. Therefore, F), satisfy
a local limit theorem ([G-H]):

(po x po)[[[|Full < M — 4B o 1/n%2,

whence the lemma. |

Proof of Theorem 4.1: We prove that for M > 4B, A := T x {t: ||t]| < M}
satisfies that

1aSn1alloo = O aSN14llL1(a) (N = 00).

By the counting proposition, uniformly in z, A,(z) =< |W,| < A", where \ =
ehtor(Z)  Therefore, there exists ¢ € N such that for all z € £y and n, An~ct! <
Ap(z) < A™F¢. Fix N > A€ and choose the n such that A" < N < A"+, The
last estimations imply that for every x € ¥y,

Ap—c() < N < Ape(x)
whence, by the preceding lemmas, for almost all (z,t) € A and N large enough,

Cl)\n-f—c
(n+ c)4/?’

CaA"—¢
>
R

The theorem follows from this. ]

Sn(la)(z,t) <
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